Search results
Results From The WOW.Com Content Network
For binary strings a and b the Hamming distance is equal to the number of ones (population count) in a XOR b. [3] The metric space of length-n binary strings, with the Hamming distance, is known as the Hamming cube; it is equivalent as a metric space to the set of distances between vertices in a hypercube graph.
As mentioned above, rows 1, 2, and 4 of G should look familiar as they map the data bits to their parity bits: p 1 covers d 1, d 2, d 4; p 2 covers d 1, d 3, d 4; p 3 covers d 2, d 3, d 4; The remaining rows (3, 5, 6, 7) map the data to their position in encoded form and there is only 1 in that row so it is an identical copy.
A = round (rand (3, 4, 5) * 10) % 3x4x5 three-dimensional or cubic array > A (:,:, 3) % 3x4 two-dimensional array along first and second dimensions ans = 8 3 5 7 8 9 1 4 4 4 2 5 > A (:, 2: 3, 3) % 3x2 two-dimensional array along first and second dimensions ans = 3 5 9 1 4 2 > A (2: end,:, 3) % 2x4 two-dimensional array using the 'end' keyword ...
T[y 2] is a substring of T with the minimal edit distance to the pattern P. Computing the E(x, y) array takes O(mn) time with the dynamic programming algorithm, while the backwards-working phase takes O(n + m) time. Another recent idea is the similarity join.
The most widely known string metric is a rudimentary one called the Levenshtein distance (also known as edit distance). [2] It operates between two input strings, returning a number equivalent to the number of substitutions and deletions needed in order to transform one input string into another.
An array data structure can be mathematically modeled as an abstract data structure (an abstract array) with two operations get(A, I): the data stored in the element of the array A whose indices are the integer tuple I. set(A, I, V): the array that results by setting the value of that element to V. These operations are required to satisfy the ...
There exist essentially two methods. One method divides the 3D region of consideration into cubes and determines the intersections of the surface with the edges of the cubes in order to get polygons on the surface, which thereafter have to be triangulated (cutting cube method). [1] [2] The expenditure for managing the data is great.
Interpolation with cubic splines between eight points. Hand-drawn technical drawings for shipbuilding are a historical example of spline interpolation; drawings were constructed using flexible rulers that were bent to follow pre-defined points.