Search results
Results From The WOW.Com Content Network
In the theory of quadratic forms, the parabola is the graph of the quadratic form x 2 (or other scalings), while the elliptic paraboloid is the graph of the positive-definite quadratic form x 2 + y 2 (or scalings), and the hyperbolic paraboloid is the graph of the indefinite quadratic form x 2 − y 2. Generalizations to more variables yield ...
The features of the graph = = + can be interpreted in terms of the variables x and y. The y -intercept is the initial value y = f ( 0 ) = b {\displaystyle y=f(0)=b} at x = 0 {\displaystyle x=0} . The slope a measures the rate of change of the output y per unit change in the input x .
Equivalently, this is the graph of the bivariate quadratic equation = + +. If a > 0, the parabola opens upwards. If a < 0, the parabola opens downwards. The coefficient a controls the degree of curvature of the graph; a larger magnitude of a gives the graph a more closed (sharply curved) appearance.
Figure 4. Graphing calculator computation of one of the two roots of the quadratic equation 2x 2 + 4x − 4 = 0. Although the display shows only five significant figures of accuracy, the retrieved value of xc is 0.732050807569, accurate to twelve significant figures. A quadratic function without real root: y = (x − 5) 2 + 9.
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
The phrase "linear equation" takes its origin in this correspondence between lines and equations: a linear equation in two variables is an equation whose solutions form a line. If b ≠ 0 , the line is the graph of the function of x that has been defined in the preceding section.
Graphs of curves y 2 = x 3 − x and y 2 = x 3 − x + 1. Although the formal definition of an elliptic curve requires some background in algebraic geometry, it is possible to describe some features of elliptic curves over the real numbers using only introductory algebra and geometry.
The solutions –1 and 2 of the polynomial equation x 2 – x + 2 = 0 are the points where the graph of the quadratic function y = x 2 – x + 2 cuts the x-axis. In general, an algebraic equation or polynomial equation is an equation of the form =, or = [a]