Ads
related to: rules for working with fractions in word form examples printables pdf images
Search results
Results From The WOW.Com Content Network
The rule of three [1] was a historical shorthand version for a particular form of cross-multiplication that could be taught to students by rote. It was considered the height of Colonial maths education [ 2 ] and still figures in the French national curriculum for secondary education, [ 3 ] and in the primary education curriculum of Spain.
Aside from sequencing the learning of fractions and operations with fractions, the document provides the following definition of a fraction: "A number expressible in the form ⁄ where is a whole number and is a positive whole number.
A valid number sentence that is true: 83 + 19 = 102. A valid number sentence that is false: 1 + 1 = 3. A valid number sentence using a 'less than' symbol: 3 + 6 < 10.
The process of transforming an irrational fraction to a rational fraction is known as rationalization. Every irrational fraction in which the radicals are monomials may be rationalized by finding the least common multiple of the indices of the roots, and substituting the variable for another variable with the least common multiple as exponent.
In mathematics, reduction refers to the rewriting of an expression into a simpler form. For example, the process of rewriting a fraction into one with the smallest whole-number denominator possible (while keeping the numerator a whole number) is called "reducing a fraction".
Fundamental rule of proportion. This rule is sometimes called Means‐Extremes Property . [ 4 ] If the ratios are expressed as fractions, then the same rule can be phrased in terms of the equality of "cross-products" [ 2 ] and is called Cross‐Products Property .