Search results
Results From The WOW.Com Content Network
In asymptotic analysis in general, one sequence () that converges to a limit is said to asymptotically converge to with a faster order of convergence than another sequence () that converges to in a shared metric space with distance metric | |, such as the real numbers or complex numbers with the ordinary absolute difference metrics, if
Convergence in distribution is the weakest form of convergence typically discussed, since it is implied by all other types of convergence mentioned in this article. However, convergence in distribution is very frequently used in practice; most often it arises from application of the central limit theorem .
It is important to note that the convergence in Doob's first martingale convergence theorem is pointwise, not uniform, and is unrelated to convergence in mean square, or indeed in any L p space. In order to obtain convergence in L 1 (i.e., convergence in mean), one requires uniform integrability of the random variables .
This expression asserts the pointwise convergence of the empirical distribution function to the true cumulative distribution function. There is a stronger result, called the Glivenko–Cantelli theorem, which states that the convergence in fact happens uniformly over t: [5]
Stein's method is a general method in probability theory to obtain bounds on the distance between two probability distributions with respect to a probability metric.It was introduced by Charles Stein, who first published it in 1972, [1] to obtain a bound between the distribution of a sum of -dependent sequence of random variables and a standard normal distribution in the Kolmogorov (uniform ...
In probability, a discrete-time Markov chain (DTMC) is a sequence of random variables, known as a stochastic process, in which the value of the next variable depends only on the value of the current variable, and not any variables in the past.
The rate of convergence is linear, except for r = 3, when it is dramatically slow, less than linear (see Bifurcation memory). When the parameter 2 < r < 3, except for the initial values 0 and 1, the fixed point = / is the same as when 1 < r ≤ 2. However, in this case the convergence is not monotonically.
In numerical analysis, Aitken's delta-squared process or Aitken extrapolation is a series acceleration method used for accelerating the rate of convergence of a sequence. It is named after Alexander Aitken, who introduced this method in 1926. [1] It is most useful for accelerating the convergence of a sequence that is converging linearly.