When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Potential gradient - Wikipedia

    en.wikipedia.org/wiki/Potential_gradient

    The simplest definition for a potential gradient F in one dimension is the following: [1] = = where ϕ(x) is some type of scalar potential and x is displacement (not distance) in the x direction, the subscripts label two different positions x 1, x 2, and potentials at those points, ϕ 1 = ϕ(x 1), ϕ 2 = ϕ(x 2).

  3. Equipotential - Wikipedia

    en.wikipedia.org/wiki/Equipotential

    The gradient of the scalar potential (and hence also its opposite, as in the case of a vector field with an associated potential field) is everywhere perpendicular to the equipotential surface, and zero inside a three-dimensional equipotential region. Electrical conductors offer an intuitive example.

  4. Corona discharge - Wikipedia

    en.wikipedia.org/wiki/Corona_discharge

    The ions generated eventually pass the charge to nearby areas of lower potential, or recombine to form neutral gas molecules. When the potential gradient (electric field) is large enough at a point in the fluid, the fluid at that point ionizes and it becomes conductive. If a charged object has a sharp point, the electric field strength around ...

  5. Diffusion current - Wikipedia

    en.wikipedia.org/wiki/Diffusion_current

    where D is the diffusion coefficient for the electron in the considered medium, n is the number of electrons per unit volume (i.e. number density), q is the magnitude of charge of an electron, μ is electron mobility in the medium, and E = −dΦ/dx (Φ potential difference) is the electric field as the potential gradient of the electric potential.

  6. Scalar potential - Wikipedia

    en.wikipedia.org/wiki/Scalar_potential

    Scalar potential is not determined by the vector field alone: indeed, the gradient of a function is unaffected if a constant is added to it. If V is defined in terms of the line integral, the ambiguity of V reflects the freedom in the choice of the reference point r 0 .

  7. Velocity potential - Wikipedia

    en.wikipedia.org/wiki/Velocity_potential

    If ϕ is a velocity potential, then ϕ + f(t) is also a velocity potential for u, where f(t) is a scalar function of time and can be constant. Velocity potentials are unique up to a constant, or a function solely of the temporal variable. The Laplacian of a velocity potential is equal to the divergence of the corresponding flow.

  8. Current–voltage characteristic - Wikipedia

    en.wikipedia.org/wiki/Current–voltage...

    A current–voltage characteristic or I–V curve (current–voltage curve) is a relationship, typically represented as a chart or graph, between the electric current through a circuit, device, or material, and the corresponding voltage, or potential difference, across it.

  9. Potential energy surface - Wikipedia

    en.wikipedia.org/wiki/Potential_energy_surface

    Potential energy surfaces are commonly shown as three-dimensional graphs, but they can also be represented by two-dimensional graphs, in which the advancement of the reaction is plotted by the use of isoenergetic lines. The collinear system H + H 2 is a simple reaction that allows a two-dimension PES to be plotted in an easy and understandable way.