Search results
Results From The WOW.Com Content Network
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
For oxidations to the aldehydes and ketones, two equivalents of chromic acid oxidize three equivalents of the alcohol: 2 HCrO 4 − + 3 RR'C(OH)H + 8 H + + 4 H 2 O → 2 [Cr(H 2 O) 6] 3+ + 3 RR'CO. For oxidation of primary alcohols to carboxylic acids, 4 equivalents of chromic acid oxidize 3 equivalents of the alcohol. The aldehyde is an ...
Unlike acid-catalyzed ester hydrolysis, it is not an equilibrium reaction and proceeds to completion. Hydroxide ion attacks the carbonyl carbon to give a tetrahedral intermediate, which then expels an alkoxide ion. The resulting carboxylic acid quickly protonates the alkoxide ion to give a carboxylate ion and an alcohol. [1]
Sulfuric acid (American spelling and the preferred IUPAC name) or sulphuric acid (Commonwealth spelling), known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen, and hydrogen, with the molecular formula H 2 SO 4. It is a colorless, odorless, and viscous liquid that is miscible with water. [7] Structure ...
Molecular models of the different molecules active in Piranha solution: peroxysulfuric acid (H 2 SO 5) and hydrogen peroxide (H 2 O 2). Piranha solution, also known as piranha etch, is a mixture of sulfuric acid (H 2 SO 4) and hydrogen peroxide (H 2 O 2).
Fischer esterification or Fischer–Speier esterification is a special type of esterification by refluxing a carboxylic acid and an alcohol in the presence of an acid catalyst. The reaction was first described by Emil Fischer and Arthur Speier in 1895. [1] Most carboxylic acids are suitable for the reaction, but the alcohol should generally be ...
In acid catalysis and base catalysis, a chemical reaction is catalyzed by an acid or a base. By Brønsted–Lowry acid–base theory, the acid is the proton (hydrogen ion, H +) donor and the base is the proton acceptor. Typical reactions catalyzed by proton transfer are esterifications and aldol reactions.
The reaction proceeds through generation of an acylium center. The reaction is completed by deprotonation of the arenium ion by AlCl 4 −, regenerating the AlCl 3 catalyst. However, in contrast to the truly catalytic alkylation reaction, the formed ketone is a moderate Lewis base, which forms a complex with the strong Lewis acid aluminum ...