Search results
Results From The WOW.Com Content Network
The eIF4A translation initiation factor was the first DEAD box protein found to have an RNA-dependent ATPase activity. It has been proposed that this abundant protein helps in unwinding the secondary structure in the 5'-untranslated region. [17] This can inhibit the scanning process of the small ribosomal subunit, if not unwound. [17]
Certain viruses cleave a portion of eIF4G that binds eIF4E, thus preventing cap-dependent translation to hijack the host machinery in favor of the viral (cap-independent) messages. eIF4A is an ATP-dependent RNA helicase that aids the ribosome by resolving certain secondary structures formed along the mRNA transcript. Recent structural biology ...
Helicase polarity, which is also deemed "directionality", is defined as the direction (characterized as 5'→3' or 3'→5') of helicase movement on the DNA/RNA single-strand along which it is moving. This determination of polarity is vital in f.ex. determining whether the tested helicase attaches to the DNA leading strand, or the DNA lagging ...
Eukaryotic initiation factor 4F (eIF4F) is a heterotrimeric protein complex that binds the 5' cap of messenger RNAs (mRNAs) to promote eukaryotic translation initiation. The eIF4F complex is composed of three non-identical subunits: the DEAD-box RNA helicase eIF4A, the cap-binding protein eIF4E, and the large "scaffold" protein eIF4G.
104721 Ensembl ENSG00000079785 ENSMUSG00000037149 UniProt Q92499 Q91VR5 RefSeq (mRNA) NM_004939 NM_134040 RefSeq (protein) NP_004930 NP_598801 Location (UCSC) Chr 2: 15.59 – 15.63 Mb Chr 12: 13.27 – 13.3 Mb PubMed search Wikidata View/Edit Human View/Edit Mouse ATP-dependent RNA helicase DDX1 is an enzyme that in humans is encoded by the DDX1 gene. Function DEAD box proteins, characterized ...
In translation, messenger RNA (mRNA) is decoded in a ribosome, outside the nucleus, to produce a specific amino acid chain, or polypeptide. The polypeptide later folds into an active protein and performs its functions in the cell. The polypeptide can also start folding during protein synthesis. [1]
A Rho factor acts on an RNA substrate. Rho's key function is its helicase activity, for which energy is provided by an RNA-dependent ATP hydrolysis. The initial binding site for Rho is an extended (~70 nucleotides, sometimes 80–100 nucleotides) single-stranded region, rich in cytosine and poor in guanine, called the rho utilisation site (rut), in the RNA being synthesised, upstream of the ...
The mRNA cap is bound by eIF4E (25 kDa), eIF4G (185 kDa) acts as a scaffold for the complex whilst the ATP-dependent RNA helicase eIF4A (46 kDa) processes the secondary structure of the mRNA 5’ UTR to render it more conducive to ribosomal binding and subsequent translation. [10] Together these three proteins are referred to as eIF4F.