Search results
Results From The WOW.Com Content Network
PR is the diameter of a circle centered on O; its radius AO is the arithmetic mean of a and b. Using the geometric mean theorem, triangle PGR's altitude GQ is the geometric mean. For any ratio a:b, AO ≥ GQ. A semicircle can be used to construct the arithmetic and geometric means of two lengths using straight-edge and compass.
Ptolemy used a circle of diameter 120, and gave chord lengths accurate to two sexagesimal (base sixty) digits after the integer part. [2] The chord function is defined geometrically as shown in the picture. The chord of an angle is the length of the chord between two points on a unit circle separated by that central angle.
The arc length, from the familiar geometry of a circle, is s = θ R {\displaystyle s={\theta }R} The area a of the circular segment is equal to the area of the circular sector minus the area of the triangular portion (using the double angle formula to get an equation in terms of θ {\displaystyle \theta } ):
A 14-vertex half graph. In graph theory, a branch of mathematics, a half graph is a special type of bipartite graph. These graphs are called the half graphs because they have approximately half of the edges of a complete bipartite graph on the same vertices. The name was given to these graphs by Paul ErdÅ‘s and András Hajnal. [1]
Radius: a line segment joining the centre of a circle with any single point on the circle itself; or the length of such a segment, which is half (the length of) a diameter. Usually, the radius is denoted and required to be a positive number. A circle with = is a degenerate case consisting of a single point.
A detailed consideration shows: The midpoints of the circles lie on the perimeter of the fixed generator circle. (The generator circle is the inverse curve of the parabola's directrix.) This property gives rise to the following simple method to draw a cardioid: Choose a circle and a point on its perimeter,
In mathematics, an implicit curve is a plane curve defined by an implicit equation relating two coordinate variables, commonly x and y. For example, the unit circle is defined by the implicit equation + =. In general, every implicit curve is defined by an equation of the form (,) =
The equation for the drawn line is y = (1 + x)t. The equation for the intersection of the line and circle is then a quadratic equation involving t. The two solutions to this equation are (−1, 0) and (cos φ, sin φ). This allows us to write the latter as rational functions of t (solutions are given below).