When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    The absolute value of the Jacobian determinant at p gives us the factor by which the function f expands or shrinks volumes near p; this is why it occurs in the general substitution rule. The Jacobian determinant is used when making a change of variables when evaluating a multiple integral of a function over a region within its domain. To ...

  3. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    The conjugate gradient method can be derived from several different perspectives, including specialization of the conjugate direction method for optimization, and variation of the Arnoldi/Lanczos iteration for eigenvalue problems. Despite differences in their approaches, these derivations share a common topic—proving the orthogonality of the ...

  4. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    Another method of deriving vector and tensor derivative identities is to replace all occurrences of a vector in an algebraic identity by the del operator, provided that no variable occurs both inside and outside the scope of an operator or both inside the scope of one operator in a term and outside the scope of another operator in the same term ...

  5. Gradient - Wikipedia

    en.wikipedia.org/wiki/Gradient

    The Jacobian matrix is the generalization of the gradient for vector-valued functions of several variables and differentiable maps between Euclidean spaces or, more generally, manifolds. [ 9 ] [ 10 ] A further generalization for a function between Banach spaces is the Fréchet derivative .

  6. Gradient method - Wikipedia

    en.wikipedia.org/wiki/Gradient_method

    In optimization, a gradient method is an algorithm to solve problems of the form min x ∈ R n f ( x ) {\displaystyle \min _{x\in \mathbb {R} ^{n}}\;f(x)} with the search directions defined by the gradient of the function at the current point.

  7. Matrix-free methods - Wikipedia

    en.wikipedia.org/wiki/Matrix-free_methods

    Matrix-free conjugate gradient method has been applied in the non-linear elasto-plastic finite element solver. [7] Solving these equations requires the calculation of the Jacobian which is costly in terms of CPU time and storage. To avoid this expense, matrix-free methods are employed.

  8. Quasi-Newton method - Wikipedia

    en.wikipedia.org/wiki/Quasi-Newton_method

    Newton's method requires the Jacobian matrix of all partial derivatives of a multivariate function when used to search for zeros or the Hessian matrix when used for finding extrema. Quasi-Newton methods, on the other hand, can be used when the Jacobian matrices or Hessian matrices are unavailable or are impractical to compute at every iteration.

  9. Hessian matrix - Wikipedia

    en.wikipedia.org/wiki/Hessian_matrix

    That is, = (+) + + where is the gradient (, …,). Computing and storing the full Hessian matrix takes Θ ( n 2 ) {\displaystyle \Theta \left(n^{2}\right)} memory, which is infeasible for high-dimensional functions such as the loss functions of neural nets , conditional random fields , and other statistical models with large numbers of parameters.