When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Coefficient of variation - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_variation

    The data set [90, 100, 110] has more variability. Its standard deviation is 10 and its average is 100, giving the coefficient of variation as 10 / 100 = 0.1; The data set [1, 5, 6, 8, 10, 40, 65, 88] has still more variability. Its standard deviation is 32.9 and its average is 27.9, giving a coefficient of variation of 32.9 / 27.9 = 1.18

  3. Algorithms for calculating variance - Wikipedia

    en.wikipedia.org/wiki/Algorithms_for_calculating...

    Algorithms for calculating variance play a major role in computational statistics.A key difficulty in the design of good algorithms for this problem is that formulas for the variance may involve sums of squares, which can lead to numerical instability as well as to arithmetic overflow when dealing with large values.

  4. Variance - Wikipedia

    en.wikipedia.org/wiki/Variance

    Normally, however, only a subset is available, and the variance calculated from this is called the sample variance. The variance calculated from a sample is considered an estimate of the full population variance. There are multiple ways to calculate an estimate of the population variance, as discussed in the section below.

  5. Covariance and correlation - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_correlation

    With any number of random variables in excess of 1, the variables can be stacked into a random vector whose i th element is the i th random variable. Then the variances and covariances can be placed in a covariance matrix, in which the (i, j) element is the covariance between the i th random variable and the j th one.

  6. Covariance - Wikipedia

    en.wikipedia.org/wiki/Covariance

    The magnitude of the covariance is the geometric mean of the variances that are in common for the two random variables. The correlation coefficient normalizes the covariance by dividing by the geometric mean of the total variances for the two random variables.

  7. Covariance function - Wikipedia

    en.wikipedia.org/wiki/Covariance_function

    For a given variance, a simple stationary parametric covariance function is the "exponential covariance function" = ⁡ (/)where V is a scaling parameter (correlation length), and d = d(x,y) is the distance between two points.

  8. Variance function - Wikipedia

    en.wikipedia.org/wiki/Variance_function

    In statistics, the variance function is a smooth function that depicts the variance of a random quantity as a function of its mean.

  9. Pearson correlation coefficient - Wikipedia

    en.wikipedia.org/.../Pearson_correlation_coefficient

    Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.