When.com Web Search

  1. Ads

    related to: identifying rigid transformations worksheet pdf

Search results

  1. Results From The WOW.Com Content Network
  2. Rigid transformation - Wikipedia

    en.wikipedia.org/wiki/Rigid_transformation

    Any object will keep the same shape and size after a proper rigid transformation. All rigid transformations are examples of affine transformations. The set of all (proper and improper) rigid transformations is a mathematical group called the Euclidean group, denoted E(n) for n-dimensional Euclidean spaces. The set of rigid motions is called the ...

  3. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    Consider a rigid body, with three orthogonal unit vectors fixed to its body (representing the three axes of the object's local coordinate system). The basic problem is to specify the orientation of these three unit vectors, and hence the rigid body, with respect to the observer's coordinate system, regarded as a reference placement in space.

  4. Euclidean group - Wikipedia

    en.wikipedia.org/wiki/Euclidean_group

    One takes f(0) to be the identity transformation I of , which describes the initial position of the body. The position and orientation of the body at any later time t will be described by the transformation f(t). Since f(0) = I is in E + (3), the same must be true of f(t) for any later time. For that reason, the direct Euclidean isometries are ...

  5. Geometric rigidity - Wikipedia

    en.wikipedia.org/wiki/Geometric_rigidity

    The information in this section can be found in. [1] The rigidity matrix can be viewed as a linear transformation from | | to | |.The domain of this transformation is the set of | | column vectors, called velocity or displacements vectors, denoted by ′, and the image is the set of | | edge distortion vectors, denoted by ′.

  6. Liouville's theorem (conformal mappings) - Wikipedia

    en.wikipedia.org/wiki/Liouville's_theorem...

    In mathematics, Liouville's theorem, proved by Joseph Liouville in 1850, [1] is a rigidity theorem about conformal mappings in Euclidean space.It states that every smooth conformal mapping on a domain of R n, where n > 2, can be expressed as a composition of translations, similarities, orthogonal transformations and inversions: they are Möbius transformations (in n dimensions).

  7. Congruence (geometry) - Wikipedia

    en.wikipedia.org/wiki/Congruence_(geometry)

    More formally, two sets of points are called congruent if, and only if, one can be transformed into the other by an isometry, i.e., a combination of rigid motions, namely a translation, a rotation, and a reflection. This means that either object can be repositioned and reflected (but not resized) so as to coincide precisely with the other object.