Search results
Results From The WOW.Com Content Network
Bromine monofluoride is a quite unstable interhalogen compound with the chemical formula BrF. It can be produced through the reaction of bromine trifluoride (or bromine pentafluoride) and bromine. Due to its lability, the compound can be detected but not isolated: [2] BrF 3 + Br 2 → 3 BrF BrF 5 + 2 Br 2 → 5 BrF Br 2(l) + F 2(g) → 2 BrF (g)
Chlorine monofluoride (ClF) is the lightest interhalogen compound. ClF is a colorless gas with a normal boiling point of −100 °C. Bromine monofluoride (BrF) has not been obtained as a pure compound — it dissociates into the trifluoride and free bromine. It is created according to the following equation: Br 2 (l) + F 2 (g) → 2 BrF(g)
In some ways the substance behaves more like water, also very prone to hydrogen bonding, than one of the other hydrogen halides, such as HCl. [32] [33] [34] Hydrogen bonding amongst HF molecules gives rise to high viscosity in the liquid phase and lower than expected pressure in the gas phase. Hydrogen fluoride does not boil until 20 °C in ...
A monofluoride is a chemical compound with one fluoride per formula unit. For a binary compound, this is the formula XF. ... structure and are soluble in water and ...
Bond energies to bromine tend to be lower than those to chlorine but higher than those to iodine, and bromine is a weaker oxidising agent than chlorine but a stronger one than iodine. This can be seen from the standard electrode potentials of the X 2 /X − couples (F, +2.866 V; Cl, +1.395 V; Br, +1.087 V; I, +0.615 V; At, approximately +0.3 V ...
Ethanol and dimethyl ether, two chemicals with the same formula (C 2 H 6 O), have different volatilities due to the different interactions that occur between their molecules in the liquid phase: ethanol molecules are capable of hydrogen bonding while dimethyl ether molecules are not. [4]
Bromine fluoride may refer to several compounds with the elements bromine and fluorine: Bromine monofluoride, BrF;
Bromine was discovered independently by two chemists, Carl Jacob Löwig [13] and Antoine Balard, [14] [15] in 1825 and 1826, respectively. [16] Löwig isolated bromine from a mineral water spring from his hometown Bad Kreuznach in 1825. Löwig used a solution of the mineral salt saturated with chlorine and extracted the bromine with diethyl ...