When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Linear independence - Wikipedia

    en.wikipedia.org/wiki/Linear_independence

    An infinite set of vectors is linearly independent if every nonempty finite subset is linearly independent. Conversely, an infinite set of vectors is linearly dependent if it contains a finite subset that is linearly dependent, or equivalently, if some vector in the set is a linear combination of other vectors in the set.

  3. Algebraic independence - Wikipedia

    en.wikipedia.org/wiki/Algebraic_independence

    In abstract algebra, a subset of a field is algebraically independent over a subfield if the elements of do not satisfy any non-trivial polynomial equation with coefficients in . In particular, a one element set { α } {\displaystyle \{\alpha \}} is algebraically independent over K {\displaystyle K} if and only if α {\displaystyle \alpha } is ...

  4. Independent equation - Wikipedia

    en.wikipedia.org/wiki/Independent_equation

    The equations 3x + 2y = 6 and 3x + 2y = 12 are independent, because any constant times one of them fails to produce the other one. An independent equation is an equation in a system of simultaneous equations which cannot be derived algebraically from the other equations. [1] The concept typically arises in the context of linear equations.

  5. Basis (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Basis_(linear_algebra)

    Equivalently, a set B is a basis if its elements are linearly independent and every element of V is a linear combination of elements of B. [1] In other words, a basis is a linearly independent spanning set. A vector space can have several bases; however all the bases have the same number of elements, called the dimension of the vector space.

  6. Lindemann–Weierstrass theorem - Wikipedia

    en.wikipedia.org/wiki/Lindemann–Weierstrass...

    The theorem is also known variously as the Hermite–Lindemann theorem and the Hermite–Lindemann–Weierstrass theorem.Charles Hermite first proved the simpler theorem where the α i exponents are required to be rational integers and linear independence is only assured over the rational integers, [4] [5] a result sometimes referred to as Hermite's theorem. [6]

  7. Consistent and inconsistent equations - Wikipedia

    en.wikipedia.org/wiki/Consistent_and...

    The system + =, + = has exactly one solution: x = 1, y = 2 The nonlinear system + =, + = has the two solutions (x, y) = (1, 0) and (x, y) = (0, 1), while + + =, + + =, + + = has an infinite number of solutions because the third equation is the first equation plus twice the second one and hence contains no independent information; thus any value of z can be chosen and values of x and y can be ...

  8. Wronskian - Wikipedia

    en.wikipedia.org/wiki/Wronskian

    In mathematics, the Wronskian of n differentiable functions is the determinant formed with the functions and their derivatives up to order n – 1.It was introduced in 1812 by the Polish mathematician Józef WroĊ„ski, and is used in the study of differential equations, where it can sometimes show the linear independence of a set of solutions.

  9. Matroid representation - Wikipedia

    en.wikipedia.org/wiki/Matroid_representation

    In the mathematical theory of matroids, a matroid representation is a family of vectors whose linear independence relation is the same as that of a given matroid. Matroid representations are analogous to group representations; both types of representation provide abstract algebraic structures (matroids and groups respectively) with concrete descriptions in terms of linear algebra.