Ads
related to: elevator control system block diagram reduction rules
Search results
Results From The WOW.Com Content Network
A block diagram is a diagram of a system in which the principal parts or functions are represented by blocks connected by lines that show the relationships of the blocks. [1] They are heavily used in engineering in hardware design , electronic design , software design , and process flow diagrams .
An example of a closed-loop block diagram, from which a transfer function may be computed, is shown below: The summing node and the G(s) and H(s) blocks can all be combined into one block, which would have the following transfer function: () = + ()
A reliability block diagram (RBD) is a diagrammatic method for showing how component reliability contributes to the success or failure of a redundant system. RBD is also known as a dependence diagram (DD). A reliability block diagram. An RBD is drawn as a series of blocks connected in parallel or series configuration. Parallel blocks indicate ...
The distinguishing feature of the PID controller is the ability to use the three control terms of proportional, integral and derivative influence on the controller output to apply accurate and optimal control. The block diagram on the right shows the principles of how these terms are generated and applied.
Block diagram of a control system with disturbance. The sensitivity function also describes the transfer function from external disturbance to process output. In fact, assuming an additive disturbance n after the output of the plant, the transfer functions of the closed loop system are given by
Control reconfiguration is an active approach in control theory to achieve fault-tolerant control for dynamic systems. [1] It is used when severe faults , such as actuator or sensor outages, cause a break-up of the control loop , which must be restructured to prevent failure at the system level.
A control loop is the fundamental building block of control systems in general and industrial control systems in particular. It consists of the process sensor, the controller function, and the final control element (FCE) which controls the process necessary to automatically adjust the value of a measured process variable (PV) to equal the value of a desired set-point (SP).
Note that the diagram shows both input (transfer to operational orbit) and output (transfer to space transportation system orbit), thus initiating the interface identification and control process. Each block in the second level diagram can be progressively developed into a series of functions, as shown in the third level diagram on Figure 2. [8]