When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Minkowski addition - Wikipedia

    en.wikipedia.org/wiki/Minkowski_addition

    For Minkowski addition, the zero set, {}, containing only the zero vector, 0, is an identity element: for every subset S of a vector space, S + { 0 } = S . {\displaystyle S+\{0\}=S.} The empty set is important in Minkowski addition, because the empty set annihilates every other subset: for every subset S of a vector space, its sum with the ...

  3. Vector addition system - Wikipedia

    en.wikipedia.org/wiki/Vector_addition_system

    A vector addition system (VAS) is one of several mathematical modeling languages for the description of distributed systems.Vector addition systems were introduced by Richard M. Karp and Raymond E. Miller in 1969, [1] and generalized to vector addition systems with states (VASS) by John E. Hopcroft and Jean-Jacques Pansiot in 1979. [2]

  4. Vector algebra - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra

    In mathematics, vector algebra may mean: The operations of vector addition and scalar multiplication of a vector space; The algebraic operations in vector calculus (vector analysis) – including the dot and cross products of 3-dimensional Euclidean space; Algebra over a field – a vector space equipped with a bilinear product

  5. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    Vector addition and scalar multiplication: a vector v (blue) is added to another vector w (red, upper illustration). Below, w is stretched by a factor of 2, yielding the sum v + 2 w . In mathematics and physics , a vector space (also called a linear space ) is a set whose elements, often called vectors , can be added together and multiplied ...

  6. Direct sum - Wikipedia

    en.wikipedia.org/wiki/Direct_sum

    A topological vector space (TVS) , such as a Banach space, is said to be a topological direct sum of two vector subspaces and if the addition map (,) + is an isomorphism of topological vector spaces (meaning that this linear map is a bijective homeomorphism), in which case and are said to be topological complements in .

  7. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  8. Matrix addition - Wikipedia

    en.wikipedia.org/wiki/Matrix_addition

    In mathematics, matrix addition is the operation of adding two matrices by adding the corresponding entries together. For a vector , v → {\displaystyle {\vec {v}}\!} , adding two matrices would have the geometric effect of applying each matrix transformation separately onto v → {\displaystyle {\vec {v}}\!} , then adding the transformed vectors.

  9. Vector field - Wikipedia

    en.wikipedia.org/wiki/Vector_field

    In vector calculus and physics, a vector field is an assignment of a vector to each point in a space, most commonly Euclidean space. [1] A vector field on a plane can be visualized as a collection of arrows with given magnitudes and directions, each attached to a point on the plane.