When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Orientation (geometry) - Wikipedia

    en.wikipedia.org/wiki/Orientation_(geometry)

    Changing orientation of a rigid body is the same as rotating the axes of a reference frame attached to it.. In geometry, the orientation, attitude, bearing, direction, or angular position of an object – such as a line, plane or rigid body – is part of the description of how it is placed in the space it occupies. [1]

  3. Roundness - Wikipedia

    en.wikipedia.org/wiki/Roundness

    Having a constant diameter, measured at varying angles around the shape, is often considered to be a simple measurement of roundness.This is misleading. [3]Although constant diameter is a necessary condition for roundness, it is not a sufficient condition for roundness: shapes exist that have constant diameter but are far from round.

  4. Sphericity - Wikipedia

    en.wikipedia.org/wiki/Sphericity

    For example, the sphericity of the balls inside a ball bearing determines the quality of the bearing, such as the load it can bear or the speed at which it can turn without failing. Sphericity is a specific example of a compactness measure of a shape.

  5. Group ring - Wikipedia

    en.wikipedia.org/wiki/Group_ring

    Let be a group, written multiplicatively, and let be a ring. The group ring of over , which we will denote by [], or simply , is the set of mappings : of finite support (() is nonzero for only finitely many elements ), where the module scalar product of a scalar in and a mapping is defined as the mapping (), and the module group sum of two mappings and is defined as the mapping () + ().

  6. Graded ring - Wikipedia

    en.wikipedia.org/wiki/Graded_ring

    A graded vector space is an example of a graded module over a field (with the field having trivial grading). A graded ring is a graded module over itself. An ideal in a graded ring is homogeneous if and only if it is a graded submodule. The annihilator of a graded module is a homogeneous ideal.

  7. Torsion (algebra) - Wikipedia

    en.wikipedia.org/wiki/Torsion_(algebra)

    In mathematics, specifically in ring theory, a torsion element is an element of a module that yields zero when multiplied by some non-zero-divisor of the ring.The torsion submodule of a module is the submodule formed by the torsion elements (in cases when this is indeed a submodule, such as when the ring is commutative).

  8. Geometry - Wikipedia

    en.wikipedia.org/wiki/Geometry

    Geometry (from Ancient Greek γεωμετρία (geōmetría) 'land measurement'; from γῆ (gê) 'earth, land' and μέτρον (métron) 'a measure') [1] is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. [2]

  9. Resolution (algebra) - Wikipedia

    en.wikipedia.org/wiki/Resolution_(algebra)

    In mathematics, and more specifically in homological algebra, a resolution (or left resolution; dually a coresolution or right resolution [1]) is an exact sequence of modules (or, more generally, of objects of an abelian category) that is used to define invariants characterizing the structure of a specific module or object of this category.