Search results
Results From The WOW.Com Content Network
Dijkstra's algorithm, as another example of a uniform-cost search algorithm, can be viewed as a special case of A* where = for all x. [12] [13] General depth-first search can be implemented using A* by considering that there is a global counter C initialized with a very large value.
Iterative deepening A* (IDA*) is a graph traversal and path search algorithm that can find the shortest path between a designated start node and any member of a set of goal nodes in a weighted graph. It is a variant of iterative deepening depth-first search that borrows the idea to use a heuristic function to conservatively estimate the ...
An algorithm is fundamentally a set of rules or defined procedures that is typically designed and used to solve a specific problem or a broad set of problems.. Broadly, algorithms define process(es), sets of rules, or methodologies that are to be followed in calculations, data processing, data mining, pattern recognition, automated reasoning or other problem-solving operations.
Flowchart of using successive subtractions to find the greatest common divisor of number r and s. In mathematics and computer science, an algorithm (/ ˈ æ l ɡ ə r ɪ ð əm / ⓘ) is a finite sequence of mathematically rigorous instructions, typically used to solve a class of specific problems or to perform a computation. [1]
The search algorithm uses the admissible heuristic to find an estimated optimal path to the goal state from the current node. For example, in A* search the evaluation function (where is the current node) is: = + where = the evaluation function.
This process of top-down induction of decision trees (TDIDT) [5] is an example of a greedy algorithm, and it is by far the most common strategy for learning decision trees from data. [ 6 ] In data mining , decision trees can be described also as the combination of mathematical and computational techniques to aid the description, categorization ...
Backpropagation training algorithms fall into three categories: steepest descent (with variable learning rate and momentum, resilient backpropagation); quasi-Newton (Broyden–Fletcher–Goldfarb–Shanno, one step secant);
Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures. The algorithm starts at the root node (selecting some arbitrary node as the root node in the case of a graph) and explores as far as possible along each branch before backtracking.