When.com Web Search

  1. Ad

    related to: chain rule integration examples math questions pdf worksheet maker app

Search results

  1. Results From The WOW.Com Content Network
  2. Chain rule - Wikipedia

    en.wikipedia.org/wiki/Chain_rule

    In this situation, the chain rule represents the fact that the derivative of f ∘ g is the composite of the derivative of f and the derivative of g. This theorem is an immediate consequence of the higher dimensional chain rule given above, and it has exactly the same formula. The chain rule is also valid for Fréchet derivatives in Banach spaces.

  3. Integration by substitution - Wikipedia

    en.wikipedia.org/wiki/Integration_by_substitution

    In calculus, integration by substitution, also known as u-substitution, reverse chain rule or change of variables, [1] is a method for evaluating integrals and antiderivatives. It is the counterpart to the chain rule for differentiation , and can loosely be thought of as using the chain rule "backwards."

  4. Triple product rule - Wikipedia

    en.wikipedia.org/wiki/Triple_product_rule

    Suppose a function f(x, y, z) = 0, where x, y, and z are functions of each other. Write the total differentials of the variables = + = + Substitute dy into dx = [() + ()] + By using the chain rule one can show the coefficient of dx on the right hand side is equal to one, thus the coefficient of dz must be zero () + = Subtracting the second term and multiplying by its inverse gives the triple ...

  5. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    The validity of this rule follows from the validity of the Feynman method, for one may always substitute a subscripted del and then immediately drop the subscript under the condition of the rule. For example, from the identity A ⋅( B × C ) = ( A × B )⋅ C we may derive A ⋅(∇× C ) = ( A ×∇)⋅ C but not ∇⋅( B × C ) = (∇× B ...

  6. Integration by parts - Wikipedia

    en.wikipedia.org/wiki/Integration_by_parts

    Two other well-known examples are when integration by parts is applied to a function expressed as a product of 1 and itself. This works if the derivative of the function is known, and the integral of this derivative times is also known. The first example is ⁡ (). We write this as:

  7. Stratonovich integral - Wikipedia

    en.wikipedia.org/wiki/Stratonovich_integral

    Although the Itô integral is the usual choice in applied mathematics, the Stratonovich integral is frequently used in physics. In some circumstances, integrals in the Stratonovich definition are easier to manipulate. Unlike the Itô calculus, Stratonovich integrals are defined such that the chain rule of ordinary calculus holds.

  8. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    Composable differentiable functions f : R n → R m and g : R m → R k satisfy the chain rule, namely () = (()) for x in R n. The Jacobian of the gradient of a scalar function of several variables has a special name: the Hessian matrix , which in a sense is the " second derivative " of the function in question.

  9. Leibniz integral rule - Wikipedia

    en.wikipedia.org/wiki/Leibniz_integral_rule

    In calculus, the Leibniz integral rule for differentiation under the integral sign, named after Gottfried Wilhelm Leibniz, states that for an integral of the form () (,), where < (), < and the integrands are functions dependent on , the derivative of this integral is expressible as (() (,)) = (, ()) (, ()) + () (,) where the partial derivative indicates that inside the integral, only the ...