When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Least-upper-bound property - Wikipedia

    en.wikipedia.org/wiki/Least-upper-bound_property

    More generally, one may define upper bound and least upper bound for any subset of a partially ordered set X, with “real number” replaced by “element of X ”. In this case, we say that X has the least-upper-bound property if every non-empty subset of X with an upper bound has a least upper bound in X.

  3. Infimum and supremum - Wikipedia

    en.wikipedia.org/wiki/Infimum_and_supremum

    Then has an upper bound (, for example, or ) but no least upper bound in : If we suppose is the least upper bound, a contradiction is immediately deduced because between any two reals and (including and ) there exists some rational , which itself would have to be the least upper bound (if >) or a member of greater than (if <).

  4. Limit inferior and limit superior - Wikipedia

    en.wikipedia.org/wiki/Limit_inferior_and_limit...

    Thus, the infimum or meet of a collection of subsets is the greatest lower bound while the supremum or join is the least upper bound. In this context, the inner limit, lim inf X n, is the largest meeting of tails of the sequence, and the outer limit, lim sup X n, is the smallest joining of tails of the sequence. The following makes this precise.

  5. Join and meet - Wikipedia

    en.wikipedia.org/wiki/Join_and_meet

    If (,) is a partially ordered set, such that each pair of elements in has a meet, then indeed = if and only if , since in the latter case indeed is a lower bound of , and since is the greatest lower bound if and only if it is a lower bound. Thus, the partial order defined by the meet in the universal algebra approach coincides with the original ...

  6. Monotone convergence theorem - Wikipedia

    en.wikipedia.org/wiki/Monotone_convergence_theorem

    The specific problem is: The organization of this article needs to be reconsidered. Theorems and their proofs are placed into different sections and for some proofs it is not clear which result they are associated with. Please help improve this article if you can. (September 2024) (Learn how and when to remove this message)

  7. Zorn's lemma - Wikipedia

    en.wikipedia.org/wiki/Zorn's_lemma

    If T is the empty set, then {v} is an upper bound for T in P. Suppose then that T is non-empty. We need to show that T has an upper bound, that is, there exists a linearly independent subset B of V containing all the members of T. Take B to be the union of all the sets in T. We wish to show that B is an upper bound for T in P.

  8. Second-order logic - Wikipedia

    en.wikipedia.org/wiki/Second-order_logic

    For example, if the domain is the set of all real numbers, one can assert in first-order logic the existence of an additive inverse of each real number by writing ∀x ∃y (x + y = 0) but one needs second-order logic to assert the least-upper-bound property for sets of real numbers, which states that every bounded, nonempty set of real numbers ...

  9. Ramsey's theorem - Wikipedia

    en.wikipedia.org/wiki/Ramsey's_theorem

    An upper bound for R(r, s) can be extracted from the proof of the theorem, and other arguments give lower bounds. (The first exponential lower bound was obtained by Paul Erdős using the probabilistic method.) However, there is a vast gap between the tightest lower bounds and the tightest upper bounds.