When.com Web Search

  1. Ads

    related to: volume of cone worksheet pdf

Search results

  1. Results From The WOW.Com Content Network
  2. On the Sphere and Cylinder - Wikipedia

    en.wikipedia.org/wiki/On_the_Sphere_and_Cylinder

    On the Sphere and Cylinder (Greek: Περὶ σφαίρας καὶ κυλίνδρου) is a treatise that was published by Archimedes in two volumes c. 225 BCE. [1] It most notably details how to find the surface area of a sphere and the volume of the contained ball and the analogous values for a cylinder, and was the first to do so. [2]

  3. Cone - Wikipedia

    en.wikipedia.org/wiki/Cone

    A double cone (not shown infinitely extended) 3D model of a cone. A cone is a three-dimensional geometric shape that tapers smoothly from a flat base (frequently, though not necessarily, circular) to a point called the apex or vertex. A cone is formed by a set of line segments, half-lines, or lines connecting a common point, the apex, to all of ...

  4. Pappus's centroid theorem - Wikipedia

    en.wikipedia.org/wiki/Pappus's_centroid_theorem

    The theorem applied to an open cylinder, cone and a sphere to obtain their surface areas. The centroids are at a distance a (in red) from the axis of rotation.. In mathematics, Pappus's centroid theorem (also known as the Guldinus theorem, Pappus–Guldinus theorem or Pappus's theorem) is either of two related theorems dealing with the surface areas and volumes of surfaces and solids of ...

  5. Nose cone design - Wikipedia

    en.wikipedia.org/wiki/Nose_cone_design

    Both a flat-faced cylinder and a cone are members of the power series. The power series nose shape is generated by rotating the y = R(x/L)n curve about the x -axis for values of n less than 1. The factor n controls the bluntness of the shape. For values of n above about 0.7, the tip is fairly sharp.

  6. Spherical sector - Wikipedia

    en.wikipedia.org/wiki/Spherical_sector

    In geometry, a spherical sector, [1] also known as a spherical cone, [2] is a portion of a sphere or of a ball defined by a conical boundary with apex at the center of the sphere. It can be described as the union of a spherical cap and the cone formed by the center of the sphere and the base of the cap. It is the three-dimensional analogue of ...

  7. Dual cone and polar cone - Wikipedia

    en.wikipedia.org/wiki/Dual_cone_and_polar_cone

    A cone C in a vector space X is said to be self-dual if X can be equipped with an inner product ⋅,⋅ such that the internal dual cone relative to this inner product is equal to C. [3] Those authors who define the dual cone as the internal dual cone in a real Hilbert space usually say that a cone is self-dual if it is equal to its internal dual.