When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gauss–Codazzi equations - Wikipedia

    en.wikipedia.org/wiki/Gauss–Codazzi_equations

    In Riemannian geometry and pseudo-Riemannian geometry, the Gauss–Codazzi equations (also called the Gauss–Codazzi–Weingarten-Mainardi equations or Gauss–Peterson–Codazzi formulas [1]) are fundamental formulas that link together the induced metric and second fundamental form of a submanifold of (or immersion into) a Riemannian or pseudo-Riemannian manifold.

  3. Gaussian function - Wikipedia

    en.wikipedia.org/wiki/Gaussian_function

    It is named after the mathematician Carl Friedrich Gauss. The graph of a Gaussian is a characteristic symmetric " bell curve " shape. The parameter a is the height of the curve's peak, b is the position of the center of the peak, and c (the standard deviation , sometimes called the Gaussian RMS width) controls the width of the "bell".

  4. Shoelace formula - Wikipedia

    en.wikipedia.org/wiki/Shoelace_formula

    Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]

  5. Class number problem - Wikipedia

    en.wikipedia.org/wiki/Class_number_problem

    The problems are posed in Gauss's Disquisitiones Arithmeticae of 1801 (Section V, Articles 303 and 304). [1] Gauss discusses imaginary quadratic fields in Article 303, stating the first two conjectures, and discusses real quadratic fields in Article 304, stating the third conjecture. Gauss conjecture (class number tends to infinity)

  6. Gauss–Laguerre quadrature - Wikipedia

    en.wikipedia.org/wiki/Gauss–Laguerre_quadrature

    In numerical analysis Gauss–Laguerre quadrature (named after Carl Friedrich Gauss and Edmond Laguerre) is an extension of the Gaussian quadrature method for approximating the value of integrals of the following kind: + (). In this case

  7. File:Laguerre-Gauss.pdf - Wikipedia

    en.wikipedia.org/wiki/File:Laguerre-Gauss.pdf

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us

  8. Multiplication theorem - Wikipedia

    en.wikipedia.org/wiki/Multiplication_theorem

    for integer k ≥ 1, and is sometimes called Gauss's multiplication formula, in honour of Carl Friedrich Gauss. The multiplication theorem for the gamma functions can be understood to be a special case, for the trivial Dirichlet character , of the Chowla–Selberg formula .

  9. Table of Gaussian integer factorizations - Wikipedia

    en.wikipedia.org/wiki/Table_of_Gaussian_Integer...

    The entry 4+2i = −i(1+i) 2 (2+i), for example, could also be written as 4+2i= (1+i) 2 (1−2i). The entries in the table resolve this ambiguity by the following convention: the factors are primes in the right complex half plane with absolute value of the real part larger than or equal to the absolute value of the imaginary part.