When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pierre de Fermat - Wikipedia

    en.wikipedia.org/wiki/Pierre_de_Fermat

    Pierre de Fermat died on January 12, 1665, at Castres, in the present-day department of Tarn. [22] The oldest and most prestigious high school in Toulouse is named after him: the Lycée Pierre-de-Fermat. French sculptor Théophile Barrau made a marble statue named Hommage à Pierre Fermat as a tribute to Fermat, now at the Capitole de Toulouse.

  3. Fermat's factorization method - Wikipedia

    en.wikipedia.org/wiki/Fermat's_factorization_method

    Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares: N = a 2 − b 2 . {\displaystyle N=a^{2}-b^{2}.} That difference is algebraically factorable as ( a + b ) ( a − b ) {\displaystyle (a+b)(a-b)} ; if neither factor equals one, it is a proper ...

  4. Fermat's principle - Wikipedia

    en.wikipedia.org/wiki/Fermat's_principle

    De Witte's treatment is more original than that description might suggest, although limited to two dimensions; it uses calculus of variations to show that Huygens' construction and Fermat's principle lead to the same differential equation for the ray path, and that in the case of Fermat's principle, the converse holds. De Witte also noted that ...

  5. Fermat's Last Theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_Last_Theorem

    For illustration, let n be factored into d and e, n = de. The general equation a n + b n = c n. implies that (a d, b d, c d) is a solution for the exponent e (a d) e + (b d) e = (c d) e. Thus, to prove that Fermat's equation has no solutions for n > 2, it would suffice to prove that it has no solutions for at least one prime factor of every n.

  6. Problem of points - Wikipedia

    en.wikipedia.org/wiki/Problem_of_points

    The problem arose again around 1654 when Chevalier de Méré posed it to Blaise Pascal. Pascal discussed the problem in his ongoing correspondence with Pierre de Fermat. Through this discussion, Pascal and Fermat not only provided a convincing, self-consistent solution to this problem, but also developed concepts that are still fundamental to ...

  7. Analytic geometry - Wikipedia

    en.wikipedia.org/wiki/Analytic_geometry

    Pierre de Fermat also pioneered the development of analytic geometry. Although not published in his lifetime, a manuscript form of Ad locos planos et solidos isagoge (Introduction to Plane and Solid Loci) was circulating in Paris in 1637, just prior to the publication of Descartes' Discourse .

  8. Adequality - Wikipedia

    en.wikipedia.org/wiki/Adequality

    Adequality is a technique developed by Pierre de Fermat in his treatise Methodus ad disquirendam maximam et minimam [1] (a Latin treatise circulated in France c. 1636 ) to calculate maxima and minima of functions, tangents to curves, area, center of mass, least action, and other problems in calculus.

  9. Fermat number - Wikipedia

    en.wikipedia.org/wiki/Fermat_number

    If 2 k + 1 is prime and k > 0, then k itself must be a power of 2, [1] so 2 k + 1 is a Fermat number; such primes are called Fermat primes. As of 2023 [update] , the only known Fermat primes are F 0 = 3 , F 1 = 5 , F 2 = 17 , F 3 = 257 , and F 4 = 65537 (sequence A019434 in the OEIS ).