When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Aitken's delta-squared process - Wikipedia

    en.wikipedia.org/wiki/Aitken's_delta-squared_process

    In numerical analysis, Aitken's delta-squared process or Aitken extrapolation is a series acceleration method used for accelerating the rate of convergence of a sequence. It is named after Alexander Aitken, who introduced this method in 1926. [1] It is most useful for accelerating the convergence of a sequence that is converging linearly.

  3. Bulirsch–Stoer algorithm - Wikipedia

    en.wikipedia.org/wiki/Bulirsch–Stoer_algorithm

    In numerical analysis, the Bulirsch–Stoer algorithm is a method for the numerical solution of ordinary differential equations which combines three powerful ideas: Richardson extrapolation, the use of rational function extrapolation in Richardson-type applications, and the modified midpoint method, [1] to obtain numerical solutions to ordinary ...

  4. Romberg's method - Wikipedia

    en.wikipedia.org/wiki/Romberg's_method

    The zeroeth extrapolation, R(n, 0), is equivalent to the trapezoidal rule with 2 n + 1 points; the first extrapolation, R(n, 1), is equivalent to Simpson's rule with 2 n + 1 points. The second extrapolation, R(n, 2), is equivalent to Boole's rule with 2 n + 1 points. The further extrapolations differ from Newton-Cotes formulas.

  5. Hermite interpolation - Wikipedia

    en.wikipedia.org/wiki/Hermite_interpolation

    In numerical analysis, Hermite interpolation, named after Charles Hermite, is a method of polynomial interpolation, which generalizes Lagrange interpolation.Lagrange interpolation allows computing a polynomial of degree less than n that takes the same value at n given points as a given function.

  6. Richardson extrapolation - Wikipedia

    en.wikipedia.org/wiki/Richardson_extrapolation

    An example of Richardson extrapolation method in two dimensions. In numerical analysis , Richardson extrapolation is a sequence acceleration method used to improve the rate of convergence of a sequence of estimates of some value A ∗ = lim h → 0 A ( h ) {\displaystyle A^{\ast }=\lim _{h\to 0}A(h)} .

  7. Trigonometric interpolation - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_interpolation

    Interpolation is the process of finding a function which goes through some given data points. For trigonometric interpolation, this function has to be a trigonometric polynomial, that is, a sum of sines and cosines of given periods. This form is especially suited for interpolation of periodic functions.

  8. Neville's algorithm - Wikipedia

    en.wikipedia.org/wiki/Neville's_algorithm

    Given n + 1 points, there is a unique polynomial of degree ≤ n which goes through the given points. Neville's algorithm evaluates this polynomial. Neville's algorithm evaluates this polynomial. Neville's algorithm is based on the Newton form of the interpolating polynomial and the recursion relation for the divided differences .

  9. Nearest-neighbor interpolation - Wikipedia

    en.wikipedia.org/wiki/Nearest-neighbor_interpolation

    For a given set of points in space, a Voronoi diagram is a decomposition of space into cells, one for each given point, so that anywhere in space, the closest given point is inside the cell. This is equivalent to nearest neighbor interpolation, by assigning the function value at the given point to all the points inside the cell. [ 3 ]