Search results
Results From The WOW.Com Content Network
The ratio of the mass–action ratio to the equilibrium constant is often called the disequilibrium ratio, denoted by the symbol . ρ = Γ K e q {\displaystyle \rho ={\frac {\Gamma }{K_{eq}}}} and is a useful measure for indicating how far from equilibrium a given reaction is.
log 10 β values between about 2 and 11 can be measured directly by potentiometric titration using a glass electrode. This enormous range of stability constant values (ca. 100 to 10 11) is possible because of the logarithmic response of the electrode. The limitations arise because the Nernst equation breaks down at very low or very high pH.
For a reversible reaction, the equilibrium constant can be measured at a variety of temperatures. This data can be plotted on a graph with ln K eq on the y-axis and 1 / T on the x axis. The data should have a linear relationship, the equation for which can be found by fitting the data using the linear form of the Van 't Hoff equation
This equation can be used to calculate the value of log K at a temperature, T 2, knowing the value at temperature T 1. The van 't Hoff equation also shows that, for an exothermic reaction ( Δ H < 0 {\displaystyle \Delta H<0} ), when temperature increases K decreases and when temperature decreases K increases, in accordance with Le Chatelier's ...
In chemistry, the law of mass action is the proposition that the rate of a chemical reaction is directly proportional to the product of the activities or concentrations of the reactants. [1] It explains and predicts behaviors of solutions in dynamic equilibrium .
The Q factor is a parameter that describes the resonance behavior of an underdamped harmonic oscillator (resonator). Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the ...
The reaction proceeds in the forward direction (towards larger values of Q r) when Δ r G < 0 or in the reverse direction (towards smaller values of Q r) when Δ r G > 0. Eventually, as the reaction mixture reaches chemical equilibrium, the activities of the components (and thus the reaction quotient) approach constant values.
In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates.The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the Van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and ...