Search results
Results From The WOW.Com Content Network
For a reversible reaction, the equilibrium constant can be measured at a variety of temperatures. This data can be plotted on a graph with ln K eq on the y-axis and 1 / T on the x axis. The data should have a linear relationship, the equation for which can be found by fitting the data using the linear form of the Van 't Hoff equation
The ratio of the mass–action ratio to the equilibrium constant is often called the disequilibrium ratio, denoted by the symbol . ρ = Γ K e q {\displaystyle \rho ={\frac {\Gamma }{K_{eq}}}} and is a useful measure for indicating how far from equilibrium a given reaction is.
In chemistry, the law of mass action is the proposition that the rate of a chemical reaction is directly proportional to the product of the activities or concentrations of the reactants. [1] It explains and predicts behaviors of solutions in dynamic equilibrium .
In thermodynamics, an activity coefficient is a factor used to account for deviation of a mixture of chemical substances from ideal behaviour. [1] In an ideal mixture, the microscopic interactions between each pair of chemical species are the same (or macroscopically equivalent, the enthalpy change of solution and volume variation in mixing is zero) and, as a result, properties of the mixtures ...
log 10 β values between about 2 and 11 can be measured directly by potentiometric titration using a glass electrode. This enormous range of stability constant values (ca. 100 to 10 11) is possible because of the logarithmic response of the electrode. The limitations arise because the Nernst equation breaks down at very low or very high pH.
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
If X is a gas, instead of [X] the numerical value of the partial pressure in bar is used. [3] If it can be assumed that the quotient of activity coefficients, , is constant over a range of experimental conditions, such as pH, then an equilibrium constant can be derived as a quotient of concentrations.
For a gas obeying the van der Waals equation, the explicit formula for the fugacity coefficient is = (()) This formula is based on the molar volume. Since the pressure and the molar volume are related through the equation of state; a typical procedure would be to choose a volume, calculate the corresponding pressure, and then evaluate ...