Search results
Results From The WOW.Com Content Network
In solid-state physics, the free electron model is a quantum mechanical model for the behaviour of charge carriers in a metallic solid. It was developed in 1927, [1] principally by Arnold Sommerfeld, who combined the classical Drude model with quantum mechanical Fermi–Dirac statistics and hence it is also known as the Drude–Sommerfeld model.
The potential is caused by ions in the periodic structure of the crystal creating an electromagnetic field so electrons are subject to a regular potential inside the lattice. It is a generalization of the free electron model , which assumes zero potential inside the lattice.
Valence electron, as an outer shell electron that is associated with an atom; Valence and conduction bands, as a conduction band electron relative to the electronic band structure of a solid; Fermi gas, as a particle of a non-interacting electron gas; Free electron model, as a particle in the Drude-Sommerfeld model of metals; Free-electron ...
Since metals can display multiple oxidation numbers, the exact definition of how many "valence electrons" an element should have in elemental form is somewhat arbitrary, but the following table lists the free electron densities given in Ashcroft and Mermin, which were calculated using the formula above based on reasonable assumptions about ...
Dispersion relation for the 2D nearly free electron model as a function of the underlying crystalline structure. The nearly free electron model is a modification of the free-electron gas model which includes a weak periodic perturbation meant to model the interaction between the conduction electrons and the ions in a crystalline solid.
The model also explains partly the Wiedemann–Franz law of 1853. Drude formula is derived in a limited way, namely by assuming that the charge carriers form a classical ideal gas. When quantum theory is considered, the Drude model can be extended to the free electron model, where the carriers follow Fermi–Dirac distribution. The conductivity ...
Although the Drude model was fairly successful in describing the electron motion within metals, it has some erroneous aspects: it predicts the Hall coefficient with the wrong sign compared to experimental measurements, the assumed additional electronic heat capacity to the lattice heat capacity, namely per electron at elevated temperatures, is also inconsistent with experimental values, since ...
This intraband absorption is different from interband absorption because the excited carrier is already in an excited band, such as an electron in the conduction band or a hole in the valence band, where it is free to move. In interband absorption, the carrier starts in a fixed, nonconducting band and is excited to a conducting one.