Search results
Results From The WOW.Com Content Network
Slope illustrated for y = (3/2)x − 1.Click on to enlarge Slope of a line in coordinates system, from f(x) = −12x + 2 to f(x) = 12x + 2. The slope of a line in the plane containing the x and y axes is generally represented by the letter m, [5] and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line.
l = slope length α = angle of inclination. The grade (US) or gradient (UK) (also called stepth, slope, incline, mainfall, pitch or rise) of a physical feature, landform or constructed line is either the elevation angle of that surface to the horizontal or its tangent. It is a special case of the slope, where zero indicates horizontality. A ...
Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.
The green line shows the slope of the velocity-time graph at the particular point where the two lines touch. Its slope is the acceleration at that point. Its slope is the acceleration at that point. In mechanics , the derivative of the position vs. time graph of an object is equal to the velocity of the object.
The ratio in the definition of the derivative is the slope of the line through two points on the graph of the function , specifically the points (, ()) and (+, (+)). As h {\displaystyle h} is made smaller, these points grow closer together, and the slope of this line approaches the limiting value, the slope of the tangent to the graph of ...
An isocline (κλίνειν, klinein, 'to lean or slope') is a line joining points with equal slope. In population dynamics and in geomagnetics, the terms isocline and isoclinic line have specific meanings which are described below.
The steepness of the slope at that point is given by the magnitude of the gradient vector. The gradient can also be used to measure how a scalar field changes in other directions, rather than just the direction of greatest change, by taking a dot product. Suppose that the steepest slope on a hill is 40%.
the slope field is an array of slope marks in the phase space (in any number of dimensions depending on the number of relevant variables; for example, two in the case of a first-order linear ODE, as seen to the right). Each slope mark is centered at a point (,,, …,) and is parallel to the vector