When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Carbon-13 nuclear magnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Carbon-13_nuclear_magnetic...

    Although ca. 1 mln. times less sensitive than 1 H NMR spectroscopy, 13 C NMR spectroscopy is widely used for characterizing organic and organometallic compounds, primarily because 1H-decoupled 13C-NMR spectra are more simple, have a greater sensitivity to differences in the chemical structure, and, thus, are better suited for identifying ...

  3. Nuclear magnetic resonance spectra database - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    In all, this database includes more than 15,000 compounds with the associated 300 MHz 1 H and 75 MHz 13 C spectra. The product includes the software necessary to view and handle the NMR data. This database can be purchased as a library through individual or group contracts. The spectra data appear to be stored as images of processed FID data.

  4. Carbon-13 - Wikipedia

    en.wikipedia.org/wiki/Carbon-13

    Bulk carbon-13 for commercial use, e.g. in chemical synthesis, is enriched from its natural 1% abundance. Although carbon-13 can be separated from the major carbon-12 isotope via techniques such as thermal diffusion, chemical exchange, gas diffusion, and laser and cryogenic distillation, currently only cryogenic distillation of methane (boiling point −161.5°C) or carbon monoxide (b.p. − ...

  5. Spectral Database for Organic Compounds - Wikipedia

    en.wikipedia.org/wiki/Spectral_Database_for...

    The 13 C NMR spectra were recorded at several spectrometers with resonance frequencies ranging from 15 MHz to 100 MHz and a resolution ranging from 0.025 to 0.045 ppm. Spectra were acquired using a pulse flip angle of 22.5 – 45 degrees and a pulse repetition time of 4 – 7 seconds. [4]

  6. Nuclear magnetic resonance spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    A 900 MHz NMR instrument with a 21.1 T magnet at HWB-NMR, Birmingham, UK Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique based on re-orientation of atomic nuclei with non-zero nuclear spins in an external magnetic field.

  7. Nuclear magnetic resonance crystallography - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    The spin interaction that is usually employed for structural analyses via solid state NMR spectroscopy is the magnetic dipolar interaction. [8] Additional knowledge about other interactions within the studied system like the chemical shift or the electric quadrupole interaction can be helpful as well, and in some cases solely the chemical shift has been employed as e.g. for zeolites. [9]

  8. Carbon-13 NMR satellite - Wikipedia

    en.wikipedia.org/wiki/Carbon-13_NMR_satellite

    Carbon satellites in physics and spectroscopy, are small peaks that can be seen shouldering the main peaks in the nuclear magnetic resonance (NMR) spectrum.These peaks can occur in the NMR spectrum of any NMR active atom (e.g. 19 F or 31 P NMR) where those atoms adjoin a carbon atom (and where the spectrum is not 13 C-decoupled, which is usually the case).

  9. Deuterated DMSO - Wikipedia

    en.wikipedia.org/wiki/Deuterated_DMSO

    13 C NMR Spectrum of DMSO-d 6. Pure deuterated DMSO shows no peaks in 1 H NMR spectroscopy and as a result is commonly used as an NMR solvent. [2] However commercially available samples are not 100% pure and a residual DMSO-d 5 1 H NMR signal is observed at 2.50ppm (quintet, J HD =1.9Hz). The 13 C chemical shift of DMSO-d 6 is 39.52ppm (septet ...