Ads
related to: polynomials class 10 important questions science solutionsstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
The general class of questions that some algorithm can answer in polynomial time is "P" or "class P". For some questions, there is no known way to find an answer quickly, but if provided with an answer, it can be verified quickly. The class of questions where an answer can be verified in polynomial time is "NP", standing for "nondeterministic ...
When considering equations, the indeterminates (variables) of polynomials are also called unknowns, and the solutions are the possible values of the unknowns for which the equality is true (in general more than one solution may exist). A polynomial equation stands in contrast to a polynomial identity like (x + y)(x − y) = x 2 − y 2, where ...
The fact that a complex solution always exists is the fundamental theorem of algebra, which was proved only at the beginning of the 19th century and does not have a purely algebraic proof. Nevertheless, the main concern of the algebraists was to solve in terms of radicals, that is to express the solutions by a formula which is built with the ...
However, unless P=NP, any polynomial-time algorithm must asymptotically be wrong on more than polynomially many of the exponentially many inputs of a certain size. [14] "If P=NP, all cryptographic ciphers can be broken." A polynomial-time problem can be very difficult to solve in practice if the polynomial's degree or constants are large enough.
If P were in fact equal to NP, then a polynomial-time algorithm would exist for solving NP-complete, and by corollary, all NP problems. [4] The complexity class NP is related to the complexity class co-NP, for which the answer "no" can be verified in polynomial time. Whether or not NP = co-NP is another outstanding question in complexity theory ...
Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm that, for any given Diophantine equation (a polynomial equation with integer coefficients and a finite number of unknowns), can decide whether the equation has a solution with all unknowns taking integer values.
A natural example of such a question concerning positive-dimensional systems is the following: decide if a polynomial system over the rational numbers has a finite number of real solutions and compute them. A generalization of this question is find at least one solution in each connected component of the set of real solutions of a polynomial ...
If the rational root test finds no rational solutions, then the only way to express the solutions algebraically uses cube roots. But if the test finds a rational solution r, then factoring out (x – r) leaves a quadratic polynomial whose two roots, found with the quadratic formula, are the remaining two roots of the cubic, avoiding cube roots.