Search results
Results From The WOW.Com Content Network
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
The image of a function f(x 1, x 2, …, x n) is the set of all values of f when the n-tuple (x 1, x 2, …, x n) runs in the whole domain of f. For a continuous (see below for a definition) real-valued function which has a connected domain, the image is either an interval or a single value. In the latter case, the function is a constant function.
On the other hand, if a function's domain is continuous, a table can give the values of the function at specific values of the domain. If an intermediate value is needed, interpolation can be used to estimate the value of the function. For example, a portion of a table for the sine function might be given as follows, with values rounded to 6 ...
If f(x) = 0 for all x ≤ a and f(x) = 1 for all x ≥ b, then the function can be taken to represent a cumulative distribution function for a random variable which is neither a discrete random variable (since the probability is zero for each point) nor an absolutely continuous random variable (since the probability density is zero everywhere ...
A complex-valued function of a real variable may be defined by relaxing, in the definition of the real-valued functions, the restriction of the codomain to the real numbers, and allowing complex values. If f(x) is such a complex valued function, it may be decomposed as f(x) = g(x) + ih(x), where g and h are real-valued functions. In other words ...
The calculus of variations (or variational calculus) is a field of mathematical analysis that uses variations, which are small changes in functions and functionals, to find maxima and minima of functionals: mappings from a set of functions to the real numbers.
The value of a function, given the value(s) assigned to its argument(s), is the quantity assumed by the function for these argument values. [ 1 ] [ 2 ] For example, if the function f is defined by f ( x ) = 2 x 2 – 3 x + 1 , then assigning the value 3 to its argument x yields the function value 10, since f (3) = 2·3 2 – 3·3 + 1 = 10 .
For example, the gamma function is a function that satisfies the functional equation (+) = and the initial value () = There are many functions that satisfy these conditions, but the gamma function is the unique one that is meromorphic in the whole complex plane, and logarithmically convex for x real and positive ( Bohr–Mollerup theorem ).