Search results
Results From The WOW.Com Content Network
Viscosity depends strongly on temperature. In liquids it usually decreases with increasing temperature, whereas, in most gases, viscosity increases with increasing temperature. This article discusses several models of this dependence, ranging from rigorous first-principles calculations for monatomic gases, to empirical correlations for liquids.
Heat of vaporization of water from melting to critical temperature. Water has a very high specific heat capacity of 4184 J/(kg·K) at 20 °C (4182 J/(kg·K) at 25 °C) —the second-highest among all the heteroatomic species (after ammonia), as well as a high heat of vaporization (40.65 kJ/mol or 2257 kJ/kg at the normal boiling point), both of ...
Consequently, if a liquid has dynamic viscosity of n centiPoise, and its density is not too different from that of water, then its kinematic viscosity is around n centiStokes. For gas, the dynamic viscosity is usually in the range of 10 to 20 microPascal-seconds, or 0.01 to 0.02 centiPoise. The density is usually on the order of 0.5 to 5 kg/m^3.
Up to 99.63 °C (the boiling point of water at 0.1 MPa), at this pressure water exists as a liquid. Above that, it exists as water vapor. Note that the boiling point of 100.0 °C is at a pressure of 0.101325 MPa (1 atm), which is the average atmospheric pressure. Water/steam data table at standard pressure (0.1 M Pa) T °C.
The viscosity of a fluid is a measure of its resistance to deformation at a given rate. [1] For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. [2] Viscosity is defined scientifically as a force multiplied by a time divided by an area.
The Vogel–Fulcher–Tammann equation, also known as Vogel–Fulcher–Tammann–Hesse equation or Vogel–Fulcher equation (abbreviated: VFT equation), is used to describe the viscosity of liquids as a function of temperature, and especially its strongly temperature dependent variation in the supercooled regime, upon approaching the glass transition.
The viscosity of water is about 10 −3 Pa·s or 0.01 poise at 20 °C (68 °F), and the speed of sound in liquid water ranges between 1,400 and 1,540 metres per second (4,600 and 5,100 ft/s) depending on temperature.
Viscous liquid. In condensed matter physics and physical chemistry, the terms viscous liquid, supercooled liquid, and glass forming liquid are often used interchangeably to designate liquids that are at the same time highly viscous (see Viscosity of amorphous materials), can be or are supercooled, and able to form a glass.