When.com Web Search

  1. Ads

    related to: active stall control wind turbine

Search results

  1. Results From The WOW.Com Content Network
  2. Wind turbine design - Wikipedia

    en.wikipedia.org/wiki/Wind_turbine_design

    An example of a wind turbine, this 3 bladed turbine is the classic design of modern wind turbines Wind turbine components : 1-Foundation, 2-Connection to the electric grid, 3-Tower, 4-Access ladder, 5-Wind orientation control (Yaw control), 6-Nacelle, 7-Generator, 8-Anemometer, 9-Electric or Mechanical Brake, 10-Gearbox, 11-Rotor blade, 12-Blade pitch control, 13-Rotor hub

  3. QBlade - Wikipedia

    en.wikipedia.org/wiki/QBlade

    QBlade is especially adequate for teaching, as it provides a ’hands-on’ feeling for Horizontal-axis wind turbine (HAWT) rotor design and shows all the fundamental relationships between blade twist, blade chord, section airfoil performance, turbine control, power and load curves in an easy and intuitive way. QBlade also includes post ...

  4. Blade pitch - Wikipedia

    en.wikipedia.org/wiki/Blade_pitch

    Pitch control does not need to be active (reliant on actuators). Passive (stall-controlled) wind turbines rely on the fact that angle of attack increases with wind speed. Blades can be designed to stop functioning past a certain speed. This is another use for twisted blades: the twist allows for a gradual stall as each portion of the blade has ...

  5. Wind-turbine aerodynamics - Wikipedia

    en.wikipedia.org/wiki/Wind-turbine_aerodynamics

    Wind-turbine blades in laydown yard awaiting installation. The primary application of wind turbines is to generate energy using the wind. Hence, the aerodynamics is a very important aspect of wind turbines. Like most machines, wind turbines come in many different types, all of them based on different energy extraction concepts.

  6. Pitch bearing - Wikipedia

    en.wikipedia.org/wiki/Pitch_bearing

    The pitch bearing, also named blade bearing, is a component of modern wind turbines which connect the rotor hub and the rotor blade. [1] The bearing allows the required oscillation to control the loads and power of the wind turbine. The pitch system brings the blade to the desired position by adapting the aerodynamic angle of attack. [2]

  7. Yaw system - Wikipedia

    en.wikipedia.org/wiki/Yaw_system

    The active yaw systems are equipped with some sort of torque producing device able to rotate the nacelle of the wind turbine against the stationary tower based on automatic signals from wind direction sensors or manual actuation (control system override).