Search results
Results From The WOW.Com Content Network
Many, if not most, undecidable problems in mathematics can be posed as word problems: determining when two distinct strings of symbols (encoding some mathematical concept or object) represent the same object or not. For undecidability in axiomatic mathematics, see List of statements undecidable in ZFC.
Mitochondrial uncoupling protein 3 (UCP3) is a members of the larger family of mitochondrial anion carrier proteins (MACP). UCPs facilitate the transfer of anions from the inner to the outer mitochondrial membrane and transfer of protons from the outer to the inner mitochondrial membrane, reducing the mitochondrial membrane potential in mammalian cells.
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
Despite the greatest strides in mathematics, these hard math problems remain unsolved. Take a crack at them yourself. ... For example, x²-6 is a polynomial with integer coefficients, since 1 and ...
A mathematical problem is a problem that can be represented, analyzed, and possibly solved, with the methods of mathematics. This can be a real-world problem, such as computing the orbits of the planets in the solar system, or a problem of a more abstract nature, such as Hilbert's problems .
In mathematical optimization theory, the linear complementarity problem (LCP) arises frequently in computational mechanics and encompasses the well-known quadratic programming as a special case. It was proposed by Cottle and Dantzig in 1968.
Those inputs can be numbers (for example, the decision problem "is the input a prime number?") or values of some other kind, such as strings of a formal language. The formal representation of a decision problem is a subset of the natural numbers. For decision problems on natural numbers, the set consists of those numbers that the decision ...
In mathematics and applied mathematics, perturbation theory comprises methods for finding an approximate solution to a problem, by starting from the exact solution of a related, simpler problem. [1] [2] A critical feature of the technique is a middle step that breaks the problem into "solvable" and "perturbative" parts. [3]