Search results
Results From The WOW.Com Content Network
[0, 1] 2 is a totally bounded space because for every ε > 0, the unit square can be covered by finitely many open discs of radius ε. A metric space (,) is totally bounded if and only if for every real number >, there exists a finite collection of open balls of radius whose centers lie in M and whose union contains M.
The metric space (M, d) is a bounded metric space (or d is a bounded metric) if M is bounded as a subset of itself. Total boundedness implies boundedness. For subsets of R n the two are equivalent. A metric space is compact if and only if it is complete and totally bounded. A subset of Euclidean space R n is compact if and only if it is closed and
In other words, the inclusion in the bidual () = is isomorphic to the inclusion of the space of countably additive μ-a.c. bounded measures inside the space of all finitely additive μ-a.c. bounded measures.
The space M is called precompact or totally bounded if for every r > 0 there is a finite cover of M by open balls of radius r. Every totally bounded space is bounded. To see this, start with a finite cover by r-balls for some arbitrary r. Since the subset of M consisting of the centers of these balls is finite, it has finite diameter, say D.
In mathematics, particularly in functional analysis, a bornological space is a type of space which, in some sense, possesses the minimum amount of structure needed to address questions of boundedness of sets and linear maps, in the same way that a topological space possesses the minimum amount of structure needed to address questions of continuity.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Isomorphisms between metric spaces are called isometries. Every metric space is also a topological space. A topological space is called metrizable, if it underlies a metric space. All manifolds are metrizable. In a metric space, we can define bounded sets and Cauchy sequences. A metric space is called complete if all Cauchy sequences converge ...
The collection of all bounded sets on a topological vector space is called the von Neumann bornology or the (canonical) bornology of .. A base or fundamental system of bounded sets of is a set of bounded subsets of such that every bounded subset of is a subset of some . [1] The set of all bounded subsets of trivially forms a fundamental system of bounded sets of .