When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Non-constructive algorithm existence proofs - Wikipedia

    en.wikipedia.org/wiki/Non-constructive_algorithm...

    However, there is a non-constructive proof that shows that linkedness is decidable in polynomial time. The proof relies on the following facts: The set of graphs for which the answer is "yes" is closed under taking minors. I. e., if a graph G can be embedded linklessly in 3-d space, then every minor of G can also be embedded linklessly.

  3. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    The following famous example of a nonconstructive proof shows that there exist two irrational numbers a and b such that is a rational number. This proof uses that 2 {\displaystyle {\sqrt {2}}} is irrational (an easy proof is known since Euclid ), but not that 2 2 {\displaystyle {\sqrt {2}}^{\sqrt {2}}} is irrational (this is true, but the proof ...

  4. Constructive proof - Wikipedia

    en.wikipedia.org/wiki/Constructive_proof

    This is in contrast to a non-constructive proof (also known as an existence proof or pure existence theorem), which proves the existence of a particular kind of object without providing an example. For avoiding confusion with the stronger concept that follows, such a constructive proof is sometimes called an effective proof .

  5. Probabilistic method - Wikipedia

    en.wikipedia.org/wiki/Probabilistic_method

    (which holds, for example, for n = 5 and r = 4), there must exist a coloring in which there are no monochromatic r-subgraphs. [a] By definition of the Ramsey number, this implies that R(r, r) must be bigger than n. In particular, R(r, r) must grow at least exponentially with r. A weakness of this argument is that it is entirely nonconstructive.

  6. Proof by contradiction - Wikipedia

    en.wikipedia.org/wiki/Proof_by_contradiction

    Such a proof is again a refutation by contradiction. A typical example is the proof of the proposition "there is no smallest positive rational number": assume there is a smallest positive rational number q and derive a contradiction by observing that ⁠ q / 2 ⁠ is even smaller than q and still positive.

  7. Lovász local lemma - Wikipedia

    en.wikipedia.org/wiki/Lovász_local_lemma

    As is often the case with probabilistic arguments, this theorem is nonconstructive and gives no method of determining an explicit element of the probability space in which no event occurs. However, algorithmic versions of the local lemma with stronger preconditions are also known (Beck 1991; Czumaj and Scheideler 2000).

  8. Law of excluded middle - Wikipedia

    en.wikipedia.org/wiki/Law_of_excluded_middle

    The above proof is an example of a non-constructive proof disallowed by intuitionists: The proof is non-constructive because it doesn't give specific numbers a {\\displaystyle a} and b {\\displaystyle b} that satisfy the theorem but only two separate possibilities, one of which must work.

  9. P versus NP problem - Wikipedia

    en.wikipedia.org/wiki/P_versus_NP_problem

    A non-constructive proof might show a solution exists without specifying either an algorithm to obtain it or a specific bound. Even if the proof is constructive, showing an explicit bounding polynomial and algorithmic details, if the polynomial is not very low-order the algorithm might not be sufficiently efficient in practice.