Search results
Results From The WOW.Com Content Network
In mathematics, the logarithm to base b is the inverse function of exponentiation with base b. That means that the logarithm of a number x to the base b is the exponent to which b must be raised to produce x. For example, since 1000 = 10 3, the logarithm base of 1000 is 3, or log 10 (1000) = 3.
Such questions are usually more difficult to solve than regular mathematical exercises like "5 − 3", even if one knows the mathematics required to solve the problem. Known as word problems , they are used in mathematics education to teach students to connect real-world situations to the abstract language of mathematics.
The history of logarithms is the story of a correspondence (in modern terms, a group isomorphism) between multiplication on the positive real numbers and addition on the real number line that was formalized in seventeenth century Europe and was widely used to simplify calculation until the advent of the digital computer.
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
For example, log 10 10000 = 4, and log 10 0.001 = −3. These are instances of the discrete logarithm problem. Other base-10 logarithms in the real numbers are not instances of the discrete logarithm problem, because they involve non-integer exponents. For example, the equation log 10 53 = 1.724276… means that 10 1.724276… = 53.
The problem to determine all positive integers such that the concatenation of and in base uses at most distinct characters for and fixed [citation needed] and many other problems in the coding theory are also the unsolved problems in mathematics.
The most familiar transcendental functions are the logarithm, the exponential (with any non-trivial base), the trigonometric, and the hyperbolic functions, and the inverses of all of these. Less familiar are the special functions of analysis, such as the gamma, elliptic, and zeta functions, all of which are transcendental.
Logarithm. Given a positive real number b such that b ≠ 1, the logarithm of a positive real number x with respect to base b is the exponent by which b must be raised to yield x. In other words, the logarithm of x to base b is the unique real number y such that b y = x.