Search results
Results From The WOW.Com Content Network
The Jahn–Teller effect (JT effect or JTE) is an important mechanism of spontaneous symmetry breaking in molecular and solid-state systems which has far-reaching consequences in different fields, and is responsible for a variety of phenomena in spectroscopy, stereochemistry, crystal chemistry, molecular and solid-state physics, and materials science.
Second-order Jahn-Teller distortion provides a rigorous and first-principles approach to the distortion problem. The interactions between the HOMOs and LUMOs to afford a new set of molecular orbitals is an example of second-order Jahn-Teller distortion.
The pseudo Jahn–Teller effect (PJTE), occasionally also known as second-order JTE, is a direct extension of the Jahn–Teller effect (JTE) where spontaneous symmetry breaking in polyatomic systems (molecules and solids) occurs even when the relevant electronic states are not degenerate. The PJTE can occur under the influence of sufficiently ...
Jahn-Teller distorted octahedral structure of [Cu(H 2 O) 6] 2+ found in the solid state and possibly also in solution [32] Proposed square pyramidal structure of [Cu(H 2 O) 5] 2+ in aqueous solution [34] The ions of these metals in the +2 and +3 oxidation states have a solvation number of 6.
The term can also refer to octahedral influenced by the Jahn–Teller effect, which is a common phenomenon encountered in coordination chemistry. This reduces the symmetry of the molecule from O h to D 4h and is known as a tetragonal distortion.
In this structure, the copper centers are octahedral. Most copper(II) compounds exhibit distortions from idealized octahedral geometry due to the Jahn-Teller effect, which in this case describes the localization of one d-electron into a molecular orbital that is strongly antibonding with respect to a pair of
Pd(III) has a d 7 electronic configuration, which leads to a Jahn–Teller distorted octahedral geometry. The geometry could also be viewed as being intermediate between square-planar and octahedral. These complexes are low-spin and paramagnetic. The first Pd(III) complex characterized by X-ray crystallography was reported in 1987. [3]
The octahedral ion [Fe(NO 2) 6] 3−, which has 5 d-electrons, would have the octahedral splitting diagram shown at right with all five electrons in the t 2g level. This low spin state therefore does not follow Hund's rule. High Spin [FeBr 6] 3− crystal field diagram