When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rational root theorem - Wikipedia

    en.wikipedia.org/wiki/Rational_root_theorem

    In the polynomial +, any rational root fully reduced should have a numerator that divides 1 and a denominator that divides 2. Hence the only possible rational roots are ±1/2 and ±1; since neither of these equates the polynomial to zero, it has no rational roots.

  3. Real-root isolation - Wikipedia

    en.wikipedia.org/wiki/Real-root_isolation

    Real-root isolation is useful because usual root-finding algorithms for computing the real roots of a polynomial may produce some real roots, but, cannot generally certify having found all real roots. In particular, if such an algorithm does not find any root, one does not know whether it is because there is no real root.

  4. Resolvent (Galois theory) - Wikipedia

    en.wikipedia.org/wiki/Resolvent_(Galois_theory)

    More exactly, if the Galois group is included in G, then the resolvent has a rational root, and the converse is true if the rational root is a simple root. Resolvents were introduced by Joseph Louis Lagrange and systematically used by Évariste Galois. Nowadays they are still a fundamental tool to compute Galois groups. The simplest examples of ...

  5. Algebraic number - Wikipedia

    en.wikipedia.org/wiki/Algebraic_number

    It includes all quadratic irrational roots, all rational numbers, and all numbers that can be formed from these using the basic arithmetic operations and the extraction of square roots. (By designating cardinal directions for +1, −1, + i , and − i , complex numbers such as 3 + i 2 {\displaystyle 3+i{\sqrt {2}}} are considered constructible.)

  6. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    In numerical analysis, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f is a number x such that f ( x ) = 0 . As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form , root-finding algorithms provide approximations to zeros.

  7. Stern–Brocot tree - Wikipedia

    en.wikipedia.org/wiki/Stern–Brocot_tree

    The root of the Stern–Brocot tree corresponds to the number 1. The parent-child relation between numbers in the Stern–Brocot tree may be defined in terms of simple continued fractions or mediants, and a path in the tree from the root to any other number q provides a sequence of approximations to q with smaller denominators than q.

  8. List of mathematical functions - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_functions

    Dirichlet function: is an indicator function that matches 1 to rational numbers and 0 to irrationals. It is nowhere continuous. Thomae's function: is a function that is continuous at all irrational numbers and discontinuous at all rational numbers. It is also a modification of Dirichlet function and sometimes called Riemann function.

  9. Rouché's theorem - Wikipedia

    en.wikipedia.org/wiki/Rouché's_theorem

    It is possible to provide an informal explanation of Rouché's theorem. Let C be a closed, simple curve (i.e., not self-intersecting). Let h(z) = f(z) + g(z). If f and g are both holomorphic on the interior of C, then h must also be holomorphic on the interior of C. Then, with the conditions imposed above, the Rouche's theorem in its original ...