Search results
Results From The WOW.Com Content Network
Other examples include many polymer solutions (which exhibit the Weissenberg effect), molten polymers, many solid suspensions, blood, and most highly viscous fluids. Newtonian fluids are named after Isaac Newton, who first used the differential equation to postulate the relation between the shear strain rate and shear stress for such fluids.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
Here "standard conditions" refers to temperatures of 25 °C and pressures of 1 atmosphere.Where data points are unavailable for 25 °C or 1 atmosphere, values are given at a nearby temperature/pressure.
In materials science and continuum mechanics, viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when undergoing deformation. Viscous materials, like water, resist both shear flow and strain linearly with time when a stress is applied. Elastic materials strain when stretched and immediately return ...
Diagram of a Maxwell material. The Maxwell model is represented by a purely viscous damper and a purely elastic spring connected in series, [4] as shown in the diagram. If, instead, we connect these two elements in parallel, [4] we get the generalized model of a solid Kelvin–Voigt material.
The no-slip condition is an empirical assumption that has been useful in modelling many macroscopic experiments. It was one of three alternatives that were the subject of contention in the 19th century, with the other two being the stagnant-layer (a thin layer of stationary fluid on which the rest of the fluid flows) and the partial slip (a finite relative velocity between solid and fluid ...
The Kelvin–Voigt model, also called the Voigt model, is represented by a purely viscous damper and purely elastic spring connected in parallel as shown in the picture. If, instead, we connect these two elements in series we get a model of a Maxwell material .
The general form of the equations of motion is not "ready for use", the stress tensor is still unknown so that more information is needed; this information is normally some knowledge of the viscous behavior of the fluid. For different types of fluid flow this results in specific forms of the Navier–Stokes equations.