Search results
Results From The WOW.Com Content Network
This is a list of articles about prime numbers. A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes.
The subsequence does not have to consist of consecutive digits, so 109 is not a minimal prime (because 19 is prime). But it does have to be in the same order; so, for example, 991 is still a minimal prime even though a subset of the digits can form the shorter prime 19 by changing the order.
These numbers have been proved prime by computer with a primality test for their form, for example the Lucas–Lehmer primality test for Mersenne numbers. “!” is the factorial, “#” is the primorial, and () is the third cyclotomic polynomial, defined as + +.
As of October 2024 the largest known prime number is a Mersenne prime with 41,024,320 decimal digits. [1] [2] There are infinitely many primes, as demonstrated by Euclid around 300 BC. No known simple formula separates prime numbers from composite numbers.
Highly composite numbers greater than 6 are also abundant numbers. One need only look at the three largest proper divisors of a particular highly composite number to ascertain this fact. It is false that all highly composite numbers are also Harshad numbers in base 10. The first highly composite number that is not a Harshad number is ...
A composite number is a positive integer that can be formed by multiplying two smaller positive integers. Accordingly it is a positive integer that has at least one divisor other than 1 and itself. [1] [2] Every positive integer is composite, prime, or the unit 1, so the composite numbers are exactly the numbers that are not prime and not a unit.
Mersenne primes and perfect numbers are two deeply interlinked types of natural numbers in number theory. Mersenne primes, named after the friar Marin Mersenne, are prime numbers that can be expressed as 2 p − 1 for some positive integer p. For example, 3 is a Mersenne prime as it is a prime number and is expressible as 2 2 − 1.
Ω(n), the prime omega function, is the number of prime factors of n counted with multiplicity (so it is the sum of all prime factor multiplicities). A prime number has Ω(n) = 1. The first: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 (sequence A000040 in the OEIS). There are many special types of prime numbers. A composite number has Ω(n) > 1.