Ads
related to: 3 phase permanent magnet generator
Search results
Results From The WOW.Com Content Network
A permanent magnet synchronous generator is a generator where the excitation field is provided by a permanent magnet instead of a coil. The term synchronous refers here to the fact that the rotor and magnetic field rotate with the same speed, because the magnetic field is generated through a shaft-mounted permanent magnet mechanism, and current is induced into the stationary armature.
The first machines to produce electric current from magnetism used permanent magnets; the dynamo machine, which used an electromagnet to produce the magnetic field, was developed later. The machine built by Hippolyte Pixii in 1832 used a rotating permanent magnet to induce alternating voltage in two fixed coils. [2]
The coils may span several slots in the stator core, making it tedious to count them. For a 3-phase motor, if you count a total of 12 coil groups, it has 4 magnetic poles. For a 12-pole 3-phase machine, there will be 36 coils. The number of magnetic poles in the rotor is equal to the number of magnetic poles in the stator.
The magnetic field of the dynamo or alternator can be provided by either wire windings called field coils or permanent magnets. Electrically-excited generators include an excitation system to produce the field flux. A generator using permanent magnets (PMs) is sometimes called a magneto, or a permanent magnet synchronous generator (PMSG).
This machine was used as a generator producing 3,000-volt, 133-hertz, single-phase AC, and an identical machine 3 miles (4.8 km) away was used as an AC motor. [ 5 ] [ 6 ] [ 7 ] Alternating current generating systems were known in simple forms from the discovery of the magnetic induction of electric current in the 1830s.
Except for permanent magnet generators, a generator produces output voltage proportional to the magnetic flux, which is the sum of flux from the magnetization of the structure and the flux proportional to the field produced by the excitation current. If there is no excitation current the flux is tiny and the armature voltage is almost nil.