When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of thermodynamic properties - Wikipedia

    en.wikipedia.org/wiki/List_of_thermodynamic...

    Altitude (or elevation) is usually not a thermodynamic property. Altitude can help specify the location of a system, but that does not describe the state of the system. An exception would be if the effect of gravity need to be considered in order to describe a state, in which case altitude could indeed be a thermodynamic property.

  3. Intensive and extensive properties - Wikipedia

    en.wikipedia.org/wiki/Intensive_and_extensive...

    The distinction between intensive and extensive properties has some theoretical uses. For example, in thermodynamics, the state of a simple compressible system is completely specified by two independent, intensive properties, along with one extensive property, such as mass. Other intensive properties are derived from those two intensive variables.

  4. Material properties (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Material_properties...

    The thermodynamic properties of materials are intensive thermodynamic parameters which are specific to a given material. Each is directly related to a second order differential of a thermodynamic potential. Examples for a simple 1-component system are: Compressibility (or its inverse, the bulk modulus) Isothermal compressibility

  5. Thermodynamic databases for pure substances - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_databases...

    Thermodynamic databases contain information about thermodynamic properties for substances, the most important being enthalpy, entropy, and Gibbs free energy. Numerical values of these thermodynamic properties are collected as tables or are calculated from thermodynamic datafiles.

  6. Category:Thermodynamic properties - Wikipedia

    en.wikipedia.org/wiki/Category:Thermodynamic...

    Pages in category "Thermodynamic properties" ... This list may not reflect recent changes. A. ... Intensive and extensive properties;

  7. Phase rule - Wikipedia

    en.wikipedia.org/wiki/Phase_rule

    In thermodynamics, the phase rule is a general principle governing multi-component, multi-phase systems in thermodynamic equilibrium.For a system without chemical reactions, it relates the number of freely varying intensive properties (F) to the number of components (C), the number of phases (P), and number of ways of performing work on the system (N): [1] [2] [3]: 123–125

  8. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    Extensive parameters are properties of the entire system, as contrasted with intensive parameters which can be defined at a single point, such as temperature and pressure. The extensive parameters (except entropy ) are generally conserved in some way as long as the system is "insulated" to changes to that parameter from the outside.

  9. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    For quasi-static and reversible processes, the first law of thermodynamics is: d U = δ Q − δ W {\displaystyle dU=\delta Q-\delta W} where δQ is the heat supplied to the system and δW is the work done by the system.