Search results
Results From The WOW.Com Content Network
The molar mass of atoms of an element is given by the relative atomic mass of the element multiplied by the molar mass constant, M u ≈ 1.000 000 × 10 −3 kg/mol ≈ 1 g/mol. For normal samples from Earth with typical isotope composition, the atomic weight can be approximated by the standard atomic weight [2] or the conventional atomic weight.
The standard atomic weight takes into account the isotopic distribution of the element in a given sample (usually assumed to be "normal"). For example, water has a molar mass of 18.0153(3) g/mol, but individual water molecules have molecular masses which range between 18.010 564 6863(15) Da ( 1 H
The equivalent weight of an element is the mass which combines with or displaces 1.008 gram of hydrogen or 8.0 grams of oxygen or 35.5 grams of chlorine. The equivalent weight of an element is the mass of a mole of the element divided by the element's valence. That is, in grams, the atomic weight of the element divided by the usual valence. [2]
Mass fraction can also be expressed, with a denominator of 100, as percentage by mass (in commercial contexts often called percentage by weight, abbreviated wt.% or % w/w; see mass versus weight). It is one way of expressing the composition of a mixture in a dimensionless size ; mole fraction (percentage by moles , mol%) and volume fraction ...
According to the International Resource Panel's Metal Stocks in Society report, the global per capita stock of aluminium in use in society (i.e. in cars, buildings, electronics, etc.) is 80 kg (180 lb). Much of this is in more-developed countries (350–500 kg (770–1,100 lb) per capita) rather than less-developed countries (35 kg (77 lb) per ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Enjoy a classic game of Hearts and watch out for the Queen of Spades!
0.18971 g/cm 3 (from 21.098 cm 3 /mole; bcc at triple point hcp−bcc−He-II: 1.463 K, 26.036 atm) 0.19406 g/cm 3 (from 20.626 cm 3 /mole; hcp at triple point hcp−bcc−He-I: 1.772 K, 30.016 atm) 0.19208 g/cm 3 (from 20.8381 cm 3 /mole; bcc at triple point hcp−bcc−He-I: 1.772 K, 30.016 atm) 3 Li lithium; use: 0.534 g/cm 3: WEL (near r.t ...