Search results
Results From The WOW.Com Content Network
Oxygen is the third most abundant chemical element in the universe, after hydrogen and helium. [68] About 0.9% of the Sun's mass is oxygen. [19] Oxygen constitutes 49.2% of the Earth's crust by mass [69] as part of oxide compounds such as silicon dioxide and is the most abundant element by mass in the Earth's crust.
Its bulk properties partly result from the interaction of its component atoms, oxygen and hydrogen, with atoms of nearby water molecules. Hydrogen atoms are covalently bonded to oxygen in a water molecule but also have an additional attraction (about 23.3 kJ·mol −1 per hydrogen atom) to an adjacent oxygen atom in a separate molecule. [2]
Atomic oxygen, denoted O or O 1, is very reactive, as the individual atoms of oxygen tend to quickly bond with nearby molecules. Its lowest-energy electronic state is a spin triplet, designated by the term symbol 3 P. On Earth's surface, it exists naturally for a very short time.
It has been shown to have a monoclinic C2/m symmetry, and its infrared absorption behaviour was attributed to the association of oxygen molecules into larger units. At 11 GPa, the intra-cluster bond length of the O 8 cluster is 0.234 nm, and the inter-cluster distance is 0.266 nm, both longer than the 0.120 nm bond-length in the oxygen molecule ...
Catalase and superoxide dismutase ameliorate the damaging effects of hydrogen peroxide and superoxide, respectively, by converting these compounds into oxygen and hydrogen peroxide (which is later converted to water), resulting in the production of benign molecules. However, this conversion is not 100% efficient, and residual peroxides persist ...
Drifting smoke particles indicate the movement of the surrounding gas.. Gas is one of the four fundamental states of matter.The others are solid, liquid, and plasma. [1] A pure gas may be made up of individual atoms (e.g. a noble gas like neon), elemental molecules made from one type of atom (e.g. oxygen), or compound molecules made from a variety of atoms (e.g. carbon dioxide).
Solid oxygen O 2, like liquid oxygen, is a clear substance with a light sky-blue color caused by absorption in the red part of the visible light spectrum. Oxygen molecules have attracted attention because of the relationship between the molecular magnetization and crystal structures, electronic structures, and superconductivity.
Tetraoxygen was first predicted in 1924 by Gilbert N. Lewis, who proposed it as an explanation for the failure of liquid oxygen to obey Curie's law. [1] Though not entirely inaccurate, computer simulations indicate that although there are no stable O 4 molecules in liquid oxygen, O 2 molecules do tend to associate in pairs with antiparallel spins, forming transient O 4 units. [2]