When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    Finally, Maxwell's equations cannot explain any phenomenon involving individual photons interacting with quantum matter, such as the photoelectric effect, Planck's law, the Duane–Hunt law, and single-photon light detectors. However, many such phenomena may be approximated using a halfway theory of quantum matter coupled to a classical ...

  3. History of Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/History_of_Maxwell's_equations

    This group of four equations was known variously as the Hertz–Heaviside equations and the Maxwell–Hertz equations, but are now universally known as Maxwell's equations. [18] Heaviside's equations, which are taught in textbooks and universities as Maxwell's equations are not exactly the same as the ones due to Maxwell, and, in fact, the ...

  4. A Dynamical Theory of the Electromagnetic Field - Wikipedia

    en.wikipedia.org/wiki/A_Dynamical_Theory_of_the...

    This is simply the Lorentz force law on a per-unit-charge basis — although Maxwell's equation first appeared at equation in "On Physical Lines of Force" in 1861, [6] 34 years before Lorentz derived his force law, which is now usually presented as a supplement to the four "Maxwell's equations".

  5. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    Curvature of spacetime affects electrodynamics. An electromagnetic field having energy and momentum also generates curvature in spacetime. Maxwell's equations in curved spacetime can be obtained by replacing the derivatives in the equations in flat spacetime with covariant derivatives. (Whether this is the appropriate generalization requires ...

  6. Classical electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Classical_electromagnetism

    From Maxwell's equations, it is clear that ∇ × E is not always zero, and hence the scalar potential alone is insufficient to define the electric field exactly. As a result, one must add a correction factor, which is generally done by subtracting the time derivative of the A vector potential described below.

  7. Gauss's law - Wikipedia

    en.wikipedia.org/wiki/Gauss's_law

    In physics (specifically electromagnetism), Gauss's law, also known as Gauss's flux theorem (or sometimes Gauss's theorem), is one of Maxwell's equations. It is an application of the divergence theorem, and it relates the distribution of electric charge to the resulting electric field.

  8. Maxwell relations - Wikipedia

    en.wikipedia.org/wiki/Maxwell_relations

    Maxwell's relations are a set of equations in thermodynamics which are derivable from the symmetry of second derivatives and from the definitions of the thermodynamic potentials. These relations are named for the nineteenth-century physicist James Clerk Maxwell .

  9. Introduction to electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Introduction_to...

    The third of Maxwell's equations is called the Ampère–Maxwell law. It states that a magnetic field can be generated by an electric current. [13] The direction of the magnetic field is given by Ampère's right-hand grip rule. If the wire is straight, then the magnetic field is curled around it like the gripped fingers in the right-hand rule.