Search results
Results From The WOW.Com Content Network
That is, the Taylor series diverges at x if the distance between x and b is larger than the radius of convergence. The Taylor series can be used to calculate the value of an entire function at every point, if the value of the function, and of all of its derivatives, are known at a single point. Uses of the Taylor series for analytic functions ...
In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite. A simulation-based alternative to this approximation is the application of Monte Carlo simulations.
The Taylor series of f will converge in some interval in which all its derivatives are bounded and do not grow too fast as k goes to infinity. (However, even if the Taylor series converges, it might not converge to f , as explained below; f is then said to be non- analytic .)
A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.
In mathematics, the arctangent series, traditionally called Gregory's series, is the Taylor series expansion at the origin of the arctangent function: [1]
The most direct method is to truncate the Maclaurin series for each of the trigonometric functions. Depending on the order of the approximation , cos θ {\displaystyle \textstyle \cos \theta } is approximated as either 1 {\displaystyle 1} or as 1 − 1 2 θ 2 {\textstyle 1-{\frac {1}{2}}\theta ^{2}} .
We derive Itô's lemma by expanding a Taylor series and applying the rules of stochastic calculus. Suppose X t {\displaystyle X_{t}} is an Itô drift-diffusion process that satisfies the stochastic differential equation
All terms in a naïve Taylor expansion are identically zero. This is because the function / possesses an essential singularity at = in the complex -plane, and therefore the function is most appropriately modeled by a Laurent series-- a Taylor series has a zero radius of convergence. Thus, if a physical problem possesses a solution of this ...