Search results
Results From The WOW.Com Content Network
It is defined by taking the fixed numerical value of the Planck constant h to be 6.626 070 15 × 10 −34 when expressed in the unit J s, which is equal to kg m 2 s −1, where the metre and the second are defined in terms of c and ∆ν Cs." [1] The mass of one litre of water at the temperature of melting ice. A litre is one thousandth of a ...
One trillionth of a second. nanosecond: 10 −9 s: One billionth of a second. Time for molecules to fluoresce. shake: 10 −8 s: 10 nanoseconds, also a casual term for a short period of time. microsecond: 10 −6 s: One millionth of a second. Symbol is μs millisecond: 10 −3 s: One thousandth of a second. Shortest time unit used on ...
[4]: 2 For example, using metre per second is coherent in a system that uses metre for length and second for time, but kilometre per hour is not coherent. The principle of coherence was successfully used to define a number of units of measure based on the CGS, including the erg for energy , the dyne for force , the barye for pressure , the ...
A newton is defined as 1 kg⋅m/s 2 (it is a named derived unit defined in terms of the SI base units). [1]: 137 One newton is, therefore, the force needed to accelerate one kilogram of mass at the rate of one metre per second squared in the direction of the applied force.
The word "minute" comes from the Latin pars minuta prima, meaning "first small part", and "second" from pars minuta secunda or "second small part". Angular measure also uses sexagesimal units; there, it is the degree that is subdivided into minutes and seconds, while in time, it is the hour.
A second is directly part of other units, such as frequency measured in hertz (inverse seconds or s −1), speed in meters per second, and acceleration in meters per second squared. The metric system unit becquerel , a measure of radioactive decay, is measured in inverse seconds and higher powers of second are involved in derivatives of ...
The metre–kilogram–second–coulomb (MKSC) and metre–kilogram–second–ampere (MKSA) systems are examples of such systems. [38] [21] The metre–tonne–second system of units (MTS) was based on the metre, tonne and second – the unit of force was the sthène and the unit of pressure was the pièze.
The metre per second is the unit of both speed (a scalar quantity) and velocity (a vector quantity, which has direction and magnitude) in the International System of Units (SI), equal to the speed of a body covering a distance of one metre in a time of one second.