When.com Web Search

  1. Ads

    related to: calculus derivatives worksheet pdf answers key free image editor

Search results

  1. Results From The WOW.Com Content Network
  2. List of derivatives and integrals in alternative calculi

    en.wikipedia.org/wiki/List_of_derivatives_and...

    Occasionally an alternative calculus is more suited than the classical calculus for expressing a given scientific or mathematical idea. [2] [3] [4] The table below is intended to assist people working with the alternative calculus called the "geometric calculus" (or its discrete analog).

  3. General Leibniz rule - Wikipedia

    en.wikipedia.org/wiki/General_Leibniz_rule

    The proof of the general Leibniz rule [2]: 68–69 proceeds by induction. Let and be -times differentiable functions.The base case when = claims that: ′ = ′ + ′, which is the usual product rule and is known to be true.

  4. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The derivatives in the table above are for when the range of the inverse secant is [,] and when the range of the inverse cosecant is [,]. It is common to additionally define an inverse tangent function with two arguments , arctan ⁡ ( y , x ) . {\displaystyle \arctan(y,x).}

  5. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    The modern development of calculus is usually credited to Isaac Newton (1643–1727) and Gottfried Wilhelm Leibniz (1646–1716), who provided independent [e] and unified approaches to differentiation and derivatives. The key insight, however, that earned them this credit, was the fundamental theorem of calculus relating differentiation and ...

  6. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    In calculus, the differential represents the principal part of the change in a function = with respect to changes in the independent variable. The differential is defined by = ′ (), where ′ is the derivative of f with respect to , and is an additional real variable (so that is a function of and ).

  7. Generalizations of the derivative - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of_the...

    This extends the directional derivative of scalar functions to sections of vector bundles or principal bundles. In Riemannian geometry, the existence of a metric chooses a unique preferred torsion-free covariant derivative, known as the Levi-Civita connection. See also gauge covariant derivative for a treatment oriented to physics.

  8. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.

  9. Notation for differentiation - Wikipedia

    en.wikipedia.org/wiki/Notation_for_differentiation

    for the first derivative, for the second derivative, for the third derivative, and for the nth derivative. When f is a function of several variables, it is common to use "∂", a stylized cursive lower-case d, rather than "D". As above, the subscripts denote the derivatives that are being taken.