Search results
Results From The WOW.Com Content Network
In USB 3.0, dual-bus architecture is used to allow both USB 2.0 (Full Speed, Low Speed, or High Speed) and USB 3.0 (SuperSpeed) operations to take place simultaneously, thus providing backward compatibility. The structural topology is the same, consisting of a tiered star topology with a root hub at level 0 and hubs at lower levels to provide ...
The physical phenomena on which the device relies (such as spinning platters in a hard drive) will also impose limits; for instance, no spinning platter shipping in 2009 saturates SATA revision 2.0 (3 Gbit/s), so moving from this 3 Gbit/s interface to USB 3.0 at 4.8 Gbit/s for one spinning drive will result in no increase in realized transfer rate.
Full speed (FS) rate of 12 Mbit/s is the basic USB signaling rate defined by USB 1.0. All USB hubs can operate at this rate. High speed (HS) rate of 480 Mbit/s was introduced in 2001 by USB 2.0. High-speed devices must also be capable of falling-back to full-speed as well, making high-speed devices backward compatible with USB 1.1 hosts ...
The Hi-Speed USB logo. USB 2.0 was released in April 2000, adding a higher maximum signaling rate of 480 Mbit/s (maximum theoretical data throughput 53 MByte/s [25]) named High Speed or High Bandwidth, in addition to the USB 1.x Full Speed signaling rate of 12 Mbit/s (maximum theoretical data throughput 1.2 MByte/s). [26]
The xHCI reduces the need for periodic device polling by allowing a USB 3.0 or later device to notify the host controller when it has data available to read, and moves the management of polling USB 2.0 and 1.1 devices that use interrupt transactions from the CPU-driven USB driver to the USB host controller.
USB 2.0 provides for a maximum cable length of 5 metres (16 ft 5 in) for devices running at high speed (480 Mbit/s). The primary reason for this limit is the maximum allowed round-trip delay of about 1.5 μs. If USB host commands are unanswered by the USB device within the allowed time, the host considers the command lost.
USB 3.0 SuperSpeed and USB 2.0 High-Speed versions defined USB 3.0 SuperSpeed – host controller (xHCI) hardware support, no software overhead for out-of-order commands; USB 2.0 High-speed – enables command queuing in USB 2.0 drives; Streams were added to the USB 3.0 SuperSpeed protocol for supporting UAS out-of-order completions
Until about 2005, most desktop and laptop computers were supplied with floppy disk drives in addition to USB ports, but floppy disk drives became obsolete after widespread adoption of USB ports and the larger USB drive capacity compared to the "1.44 megabyte" 3.5-inch floppy disk.