Search results
Results From The WOW.Com Content Network
Tangent line at (x 0, f(x 0)). The derivative f′(x) of a curve at a point is the slope (rise over run) of the line tangent to that curve at that point. Differential calculus is the study of the definition, properties, and applications of the derivative of a function. The process of finding the derivative is called differentiation. Given a ...
The calculus of variations is concerned with the maxima or minima (collectively called extrema) of functionals. A functional maps functions to scalars, so functionals have been described as "functions of functions." Functionals have extrema with respect to the elements of a given function space defined over a given domain.
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
The area A(x) may not be easily computable, but it is assumed to be well defined. The area under the curve between x and x + h could be computed by finding the area between 0 and x + h, then subtracting the area between 0 and x. In other words, the area of this "strip" would be A(x + h) − A(x). There is another way to estimate the area of ...
One way of improving the approximation is to take a quadratic approximation. That is to say, the linearization of a real-valued function f(x) at the point x 0 is a linear polynomial a + b(x − x 0), and it may be possible to get a better approximation by considering a quadratic polynomial a + b(x − x 0) + c(x − x 0) 2.
In calculus, symbolic integration is the problem of finding a formula for the antiderivative, or indefinite integral, of a given function f(x), i.e. to find a formula for a differentiable function F(x) such that = (). This is also denoted = ().
In particular, the fundamental theorem of calculus allows one to solve a much broader class of problems. Equal in importance is the comprehensive mathematical framework that both Leibniz and Newton developed. Given the name infinitesimal calculus, it allowed for precise analysis of functions with continuous domains.
The absolute value or modulus |x| of a real number x is the non-negative value of x without regard to its sign. Namely, |x| = x for a positive x, |x| = −x for a negative x (in which case −x is positive), and |0| = 0. For example, the absolute value of 3 is 3, and the absolute value of −3 is also 3.